160 research outputs found

    Atomic Carbon in M82: Physical conditions derived from simultaneous observations of the [CI] fine structure submillimeter wave transitions

    Get PDF
    We report the first extragalactic detection of the neutral carbon [CI] 3P2-3P1 fine structure line at 809 GHz. The line was observed towards M82 simultaneously with the 3P1-3P0 line at 492 GHz, providing a precise measurement of the J=2-1/J=1-0 integrated line ratio of 0.96 (on a [K km s^-1] -scale). This ratio constrains the [CI] emitting gas to have a temperature of at least 50 K and a density of at least 10^4 cm^-3. Already at this minimum temperature and density, the beam averaged CI-column density is large, 2.1 10^18 cm^-2, confirming the high CI/CO abundance ratio of approximately 0.5 estimated earlier from the 492 GHz line alone. We argue that the [CI] emission from M82 most likely arises in clouds of linear size around a few pc with a density of about 10^4 cm^-3 or slightly higher and temperatures of 50 K up to about 100 K.Comment: 4 pages, 2 figures, ApJL in press, postscript also available at ftp://apollo.ph1.uni-koeln.de/pub/stutzki/m82_pap.ps.gz e-mail-contact:[email protected]

    The Distribution of Water Emission in M17SW

    Get PDF
    We present a 17-point map of the M17SW cloud core in the 1_{10}-1_{01} transition of ortho-water at 557 GHz obtained with the Submillimeter Wave Astronomy Satellite. Water emission was detected in 11 of the 17 observed positions. The line widths of the water emission vary between 4 and 9 km s^{-1}, and are similar to other emission lines that arise in the M17SW core. A direct comparison is made between the spatial extent of the water emission and the ^{13}CO J = 5\to4 emission; the good agreement suggests that the water emission arises in the same warm, dense gas as the ^{13}CO emission. A spectrum of the H_2^{18}O line was also obtained at the center position of the cloud core, but no emission was detected. We estimate that the average abundance of ortho-water relative to H_2 within the M17 dense core is approximately 1x10^{-9}, 30 times smaller than the average for the Orion core. Toward the H II region/molecular cloud interface in M17SW the ortho-water abundance may be about 5 times larger than in the dense core.Comment: 4 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty (included), and apjfonts.sty (included

    Water Abundance in Molecular Cloud Cores

    Get PDF
    We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the 1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL 2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and B335. We also present a small map of the water emission in S140. Observations of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission was detected. The abundance of ortho-water relative to H_2 in the giant molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five of the cloud cores in our sample have previous water detections; however, in all cases the emission is thought to arise from hot cores with small angular extents. The water abundance estimated for the hot core gas is at least 100 times larger than in the gas probed by SWAS. The most stringent upper limit on the ortho-water abundance in dark clouds is provided in TMC-1, where the 3-sigma upper limit on the ortho-water fractional abundance is 7x10^{-8}.Comment: 5 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty (included), and apjfonts.sty (included

    First observations with CONDOR, a 1.5 THz heterodyne receiver

    Get PDF
    The THz atmospheric windows centered at roughly 1.3 and 1.5~THz, contain numerous spectral lines of astronomical importance, including three high-J CO lines, the N+ line at 205 microns, and the ground transition of para-H2D+. The CO lines are tracers of hot (several 100K), dense gas; N+ is a cooling line of diffuse, ionized gas; the H2D+ line is a non-depleting tracer of cold (~20K), dense gas. As the THz lines benefit the study of diverse phenomena (from high-mass star-forming regions to the WIM to cold prestellar cores), we have built the CO N+ Deuterium Observations Receiver (CONDOR) to further explore the THz windows by ground-based observations. CONDOR was designed to be used at the Atacama Pathfinder EXperiment (APEX) and Stratospheric Observatory For Infrared Astronomy (SOFIA). CONDOR was installed at the APEX telescope and test observations were made to characterize the instrument. The combination of CONDOR on APEX successfully detected THz radiation from astronomical sources. CONDOR operated with typical Trec=1600K and spectral Allan variance times of 30s. CONDOR's first light observations of CO 13-12 emission from the hot core Orion FIR4 (= OMC1 South) revealed a narrow line with T(MB) = 210K and delta(V)=5.4km/s. A search for N+ emission from the ionization front of the Orion Bar resulted in a non-detection. The successful deployment of CONDOR at APEX demonstrates the potential for making observations at THz frequencies from ground-based facilities.Comment: 4 pages + list of objects, 3 figures, to be published in A&A special APEX issu

    Photon Dominated Regions in NGC 3603

    Get PDF
    Aims: We aim at deriving the excitation conditions of the interstellar gas as well as the local FUV intensities in the molecular cloud surrounding NGC 3603 to get a coherent picture of how the gas is energized by the central stars. Methods: The NANTEN2-4m submillimeter antenna is used to map the [CI] 1-0, 2-1 and CO 4-3, 7-6 lines in a 2' x 2' region around the young OB cluster NGC 3603 YC. These data are combined with C18O 2-1 data, HIRES-processed IRAS 60 and 100 micron maps of the FIR continuum, and Spitzer/IRAC maps. Results: The NANTEN2 observations show the presence of two molecular clumps located south-east and south-west of the cluster and confirm the overall structure already found by previous CS and C18O observations. We find a slight position offset of the peak intensity of CO and [CI], and the atomic carbon appears to be further extended compared to the molecular material. We used the HIRES far-infrared dust data to derive a map of the FUV field heating the dust. We constrain the FUV field to values of \chi = 3 - 6 \times 10^3 in units of the Draine field across the clouds. Approximately 0.2 to 0.3 % of the total FUV energy is re-emitted in the [CII] 158 {\mu}m cooling line observed by ISO. Applying LTE and escape probability calculations, we derive temperatures (TMM1 = 43 K, TMM2 = 47 K), column densities (N(MM1) = 0.9 \times 10^22 cm^-2, N(MM2) = 2.5 \times 10^22 cm^-2) and densities (n(MM1) = 3 \times 10^3 cm^-3, n(MM2) = 10^3 -10^4 cm^-3) for the two observed molecular clumps MM1 and MM2. Conclusions: The cluster is strongly interacting with the ambient molecular cloud, governing its structure and physical conditions. A stability analysis shows the existence of gravitationally collapsing gas clumps which should lead to star formation. Embedded IR sources have already been observed in the outskirts of the molecular cloud and seem to support our conclusions.Comment: 13 pages, 10 figures, accepted for publication by A&

    Herschel observations of extra-ordinary sources: Detection of Hydrogen Fluoride in absorption towards Orion~KL

    Get PDF
    We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules ("weeds"), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4.Comment: 5 pages, 3 figures, paper to be published in the Herschel special issue of A&A letter

    Herschel observations of EXtra-Ordinary Sources: The Terahertz spectrum of Orion KL seen at high spectral resolution

    Get PDF
    We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4 - 1702.8 GHz (band 6b) and 1788.4 - 1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands.Comment: Accepted for publication in the Herschel HIFI special issue of Astronomy and Astrophysics Letters, 5 pages, 3 figure

    First results on Martian carbon monoxide from Herschel/HIFI observations

    Full text link
    We report on the initial analysis of Herschel/HIFI carbon monoxide (CO) observations of the Martian atmosphere performed between 11 and 16 April 2010. We selected the (7-6) rotational transitions of the isotopes ^{13}CO at 771 GHz and C^{18}O at 768 GHz in order to retrieve the mean vertical profile of temperature and the mean volume mixing ratio of carbon monoxide. The derived temperature profile agrees within less than 5 K with general circulation model (GCM) predictions up to an altitude of 45 km, however, show about 12-15 K lower values at 60 km. The CO mixing ratio was determined as 980 \pm 150 ppm, in agreement with the 900 ppm derived from Herschel/SPIRE observations in November 2009.Comment: Accepted for publication in Astronomy and Astrophysics (special issue on HIFI first results); minor changes to match published versio

    Submillimeter Wave Astronomy Satellite Observations of Extended Water Emission in Orion

    Get PDF
    We have used the Submillimeter Wave Astronomy Satellite to map the ground-state 1_{10}-1_{01} transition of ortho-water at 557 GHz in the Orion molecular cloud. Water emission was detected in Orion over an angular extent of about 20 arcmin, or nearly 3 pc. The water emission is relatively weak, with line widths (3-6 km s^{-1}) and V_{LSR} velocities (9-11 km s^{-1}) consistent with an origin in the cold gas of the molecular ridge. We find that the ortho-water abundance relative to H_2 in the extended gas in Orion varies between 1 and 8x10^{-8}, with an average of 3x10^{-8}. The absence of detectable narrow-line ortho-H_2^{18}O emission is used to set a 3-sigma upper limit on the relative ortho-water abundance of 7x10^{-8}.Comment: 4 pages, 2 Postscript figures, uses aastex.cls, emulateapj5.sty (included), and apjfonts.sty (included

    HERSCHEL-HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2

    Get PDF
    HERSCHEL-HIFI observations of water from the intermediate mass protostar NGC7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four H216O and two H218O lines, were observed and all but one H218O line were detected. The four H2 16 O lines discussed here share a similar morphology: a narrower, \approx 6 km/s, component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, \approx 25 km/s component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to \approx 10-7 for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be \approx 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J.Comment: 6 pages, 4 figures, accepted by A&
    corecore