792 research outputs found
Symmetric Strategy Improvement
Symmetry is inherent in the definition of most of the two-player zero-sum
games, including parity, mean-payoff, and discounted-payoff games. It is
therefore quite surprising that no symmetric analysis techniques for these
games exist. We develop a novel symmetric strategy improvement algorithm where,
in each iteration, the strategies of both players are improved simultaneously.
We show that symmetric strategy improvement defies Friedmann's traps, which
shook the belief in the potential of classic strategy improvement to be
polynomial
Incentive Stackelberg Mean-payoff Games
We introduce and study incentive equilibria for multi-player meanpayoff
games. Incentive equilibria generalise well-studied solution concepts such as
Nash equilibria and leader equilibria (also known as Stackelberg equilibria).
Recall that a strategy profile is a Nash equilibrium if no player can improve
his payoff by changing his strategy unilaterally. In the setting of incentive
and leader equilibria, there is a distinguished player called the leader who
can assign strategies to all other players, referred to as her followers. A
strategy profile is a leader strategy profile if no player, except for the
leader, can improve his payoff by changing his strategy unilaterally, and a
leader equilibrium is a leader strategy profile with a maximal return for the
leader. In the proposed case of incentive equilibria, the leader can
additionally influence the behaviour of her followers by transferring parts of
her payoff to her followers. The ability to incentivise her followers provides
the leader with more freedom in selecting strategy profiles, and we show that
this can indeed improve the payoff for the leader in such games. The key
fundamental result of the paper is the existence of incentive equilibria in
mean-payoff games. We further show that the decision problem related to
constructing incentive equilibria is NP-complete. On a positive note, we show
that, when the number of players is fixed, the complexity of the problem falls
in the same class as two-player mean-payoff games. We also present an
implementation of the proposed algorithms, and discuss experimental results
that demonstrate the feasibility of the analysis of medium sized games.Comment: 15 pages, references, appendix, 5 figure
PranCS: A protocol and discrete controller synthesis tool
© 2017, Springer International Publishing AG. PranCS is a tool for synthesizing protocol adapters and discrete controllers. It exploits general search techniques such as simulated annealing and genetic programming for homing in on correct solutions, and evaluates the fitness of candidates by using model-checking results. Our Proctocol and Controller Synthesis (PranCS) tool uses NuSMV as a back-end for the individual model-checking tasks and a simple candidate mutator to drive the search. PranCS is also designed to explore the parameter space of the search techniques it implements. In this paper, we use PranCS to study the influence of turning various parameters in the synthesis process
Optimal Tableaux Method for Constructive Satisfiability Testing and Model Synthesis in the Alternating-time Temporal Logic ATL+
We develop a sound, complete and practically implementable tableaux-based
decision method for constructive satisfiability testing and model synthesis in
the fragment ATL+ of the full Alternating time temporal logic ATL*. The method
extends in an essential way a previously developed tableaux-based decision
method for ATL and works in 2EXPTIME, which is the optimal worst case
complexity of the satisfiability problem for ATL+ . We also discuss how
suitable parametrizations and syntactic restrictions on the class of input ATL+
formulae can reduce the complexity of the satisfiability problem.Comment: 45 page
Minimising good-for-games automata is NP-complete
This paper discusses the hardness of finding minimal good-for-games (GFG) Büchi, Co-Büchi, and parity automata with state based acceptance. The problem appears to sit between finding small deterministic and finding small nondeterministic automata, where minimality is NP-complete and PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that minimising Co-Büchi automata with transition based acceptance is tractable, which suggests that the complexity of minimising GFG automata might be cheaper than minimising deterministic automata. We show for the standard state based acceptance that the minimality of a GFG automaton is NP-complete for Büchi, Co-Büchi, and parity GFG automata. The proofs are a surprisingly straight forward generalisation of the proofs from deterministic Büchi automata: they use a similar reductions, and the same hard class of languages
Efficient approximation of optimal control for continuous-time Markov games
We study the time-bounded reachability problem for continuous-time Markov decision processes (CTMDPs) and games (CTMGs). Existing techniques for this problem use discretisation techniques to partition time into discrete intervals of size ε, and optimal control is approximated for each interval separately. Current techniques provide an accuracy of on each interval, which leads to an infeasibly large number of intervals. We propose a sequence of approximations that achieve accuracies of , , and , that allow us to drastically reduce the number of intervals that are considered. For CTMDPs, the performance of the resulting algorithms is comparable to the heuristic approach given by Buchholz and Schulz, while also being theoretically justified. All of our results generalise to CTMGs, where our results yield the first practically implementable algorithms for this problem. We also provide memoryless strategies for both players that achieve similar error bounds
A Game-Theoretic Foundation for the Maximum Software Resilience against Dense Errors
Safety-critical systems need to maintain their functionality in the presence of multiple errors caused by component failures or disastrous environment events. We propose a game-theoretic foundation for synthesizing control strategies that maximize the resilience of a software system in defense against a realistic error model. The new control objective of such a game is called -resilience. In order to be -resilient, a system needs to rapidly recover from infinitely many waves of a small number of up to close errors provided that the blocks of up to errors are separated by short time intervals, which can be used by the system to recover. We first argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We then show how the analysis of -resilience problems can be formulated as a model-checking problem of a mild extension to the alternating-time -calculus (AMC). The witness for resilience, which can be provided by the model checker, can be used for providing control strategies that are optimal with respect to resilience. We show that the computational complexity of constructing such optimal control strategies is low and demonstrate the feasibility of our approach through an implementation and experimental results
Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow
Little is known about morphological instability of a solidification front
during the crystal growth of a thin film of flowing supercooled liquid with a
free surface: for example, the ring-like ripples on the surface of icicles. The
length scale of the ripples is nearly 1 cm. Two theoretical models for the
ripple formation mechanism have been proposed. However, these models lead to
quite different results because of differences in the boundary conditions at
the solid-liquid interface and liquid-air surface. The validity of the
assumption used in the two models is numerically investigated and some of the
theoretical predictions are compared with experiments.Comment: 30 pages, 9 figure
Recommended from our members
A trend-preserving bias correction – The ISI-MIP approach
Statistical bias correction is commonly applied within climate impact modelling to correct climate model data for systematic deviations of the simulated historical data from observations. Methods are based on transfer functions generated to map the distribution of the simulated historical data to that of the observations. Those are subsequently applied to correct the future projections. Here, we present the bias correction method that was developed within ISI-MIP, the first Inter-Sectoral Impact Model Intercomparison Project. ISI-MIP is designed to synthesise impact projections in the agriculture, water, biome, health, and infrastructure sectors at different levels of global warming.
Bias-corrected climate data that are used as input for the impact simulations could be only provided over land areas. To ensure consistency with the global (land + ocean) temperature information the bias correction method has to preserve the warming signal. Here we present the applied method that preserves the absolute changes in monthly temperature, and relative changes in monthly values of precipitation and the other variables needed for ISI-MIP. The proposed methodology represents a modification of the transfer function approach applied in the Water Model Intercomparison Project (Water-MIP). Correction of the monthly mean is followed by correction of the daily variability about the monthly mean.
Besides the general idea and technical details of the ISI-MIP method, we show and discuss the potential and limitations of the applied bias correction. In particular, while the trend and the long-term mean are well represented, limitations with regards to the adjustment of the variability persist which may affect, e.g. small scale features or extremes
Cryogenic Buffer Gas beams of AlF, CaF, MgF, YbF, Al, Ca, Yb and NO -- a comparison
Cryogenic buffer gas beams are central to many cold molecule experiments. Here, we use absorption and fluorescence spectroscopy to directly compare molecular beams of AlF, CaF, MgF, and YbF molecules, produced by chemical reaction of laser ablated atoms with fluorine rich reagents. The beam brightness for AlF is measured as 2 X 1012 molecules per steradian per pulse in a single rotational state, comparable to an Al atomic beam produced in the same setup. The CaF, MgF and YbF beams show an order of magnitude lower brightness than AlF, and far below the brightness of Ca and Yb beams. The addition of either NF3 or SF6 to the cell extinguishes the Al atomic beam, but has a minimal effect on the Ca and Yb beams. NF3 reacts more efficiently than SF6, as a significantly lower flow rate is required to maximise the molecule production, which is particularly beneficial for long-term stability of the AlF beam. We use NO as a proxy for the reactant gas as it can be optically detected. We demonstrate that a cold, rotationally pure NO beam can be generated by laser desorption, thereby gaining insight into the dynamics of the reactant gas inside the buffer gas cell
- …