
Minimising Good-For-Games Automata Is
NP-Complete
Sven Schewe
University of Liverpool, UK
https://cgi.csc.liv.ac.uk/~sven/
sven.schewe@liverpool.ac.uk

Abstract
This paper discusses the hardness of finding minimal good-for-games (GFG) Büchi, Co-Büchi, and
parity automata with state based acceptance. The problem appears to sit between finding small
deterministic and finding small nondeterministic automata, where minimality is NP-complete and
PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that
minimising Co-Büchi automata with transition based acceptance is tractable, which suggests that the
complexity of minimising GFG automata might be cheaper than minimising deterministic automata.

We show for the standard state based acceptance that the minimality of a GFG automaton
is NP-complete for Büchi, Co-Büchi, and parity GFG automata. The proofs are a surprisingly
straight forward generalisation of the proofs from deterministic Büchi automata: they use a similar
reductions, and the same hard class of languages.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Good-for-Games Automata, Automata Minimisation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.56

Related Version An earlier version is available on arXiv [9], https://arxiv.org/abs/2003.11979.

Funding This work was partly supported by the EPSRC through grant EP/P020909/1.

Acknowledgements Many thanks to Patrick Totzke and Karoliina Lehtinen for valuable feedback
and pointers to beautiful related works, as well as the constructive feedback of the reviewers.

1 Introduction

Good-for-games (GFG) automata form a useful class of automata that can be used to replace
deterministic automata to recognise languages in several settings, like reactive synthesis [4]. As
good-for-games automata sit between deterministic and general nondeterministic automata,
it stands to be expected that the complexity of their minimality also sits between the
minimality of deterministic automata (NP-complete [8]) and nondeterministic automata
(which is PSPACE-complete like for nondeterministic finite automata [5]). It thus came
as a surprise when Radi and Kupferman showed that minimising Co-Büchi automata with
transition based acceptance is tractable [7].

This raises the question whether the difference is that good-for-games automata are
inherently simpler to minimise, or if it is a consequence of choosing the less common transition
based acceptance. We show that the answer for the more common state based acceptance is
that minimising GFG automata is as hard as minimising deterministic automata.

While extending our “inclusion in NP” argument to transition based acceptance is straight
forward, our hardness proof generalises the NP-hardness proof from [8], and we will close
this paper with discussing why this hardness argument does not extend to automata with
transition based acceptance. This leaves the complexity of minimising transition based GFG
automata (except for Co-Büchi GFG automata [7]) and deterministic automata open.

© Sven Schewe;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 56; pp. 56:1–56:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9093-9518
https://cgi.csc.liv.ac.uk/~sven/
mailto:sven.schewe@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://arxiv.org/abs/2003.11979
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Minimising Good-For-Games Automata Is NP-Complete

2 Automata

2.1 Nondeterministic Parity Automata
Parity automata are word automata that recognise ω-regular languages over a finite set of
symbols. A nondeterministic parity automaton (NPA) is a tuple P = (Σ, Q, q0, δ, π), where

Σ denotes a finite set of symbols,
Q denotes a finite set of states,
q0 ∈ Q+ with Q+ = Q ∪ {⊥,>} denotes a designated initial state,
δ : Q+ × Σ → 2Q

+ (with 2Q
+ = 2Q ∪ {{⊥}, {>}} \ {∅} is a function that maps pairs of

states and input letters to either a non-empty set of states, or to ⊥ (false, immediate
rejection, blocking) or > (true, immediate acceptance)1, such that δ(>, σ) = {>} and
δ(⊥, σ) = {⊥} hold for all σ ∈ Σ, and
π : Q+ → P ⊂ N is a priority function that maps states to natural numbers (mapping ⊥
and > to an odd and even number, respectively), called their priority.

Parity automata read infinite input words α = a0a1a2 . . . ∈ Σω. (As usual, ω = N0
denotes the non-negative integers.) Their acceptance mechanism is defined in terms of runs:
a run ρ = r0r1r2 . . . ∈ Q+

ω of P on α is an ω-word that satisfies r0 = q0 and, for all i ∈ ω,
ri+1 ∈ δ(ri, ai). A run is called accepting if the highest number occurring infinitely often
in the infinite sequence π(r0)π(r1)π(r2) . . . is even, and rejecting if it is odd. An ω-word is
accepted by P if it has an accepting run. The set of ω-words accepted by P is called its
language, denoted L(P). Two automata that recognise the same language are called language
equivalent.

We assume without loss of generality that max{P} ≤ |Q|+ 1. (If a priority p ≥ 2 does
not exist, we can reduce the priority of all states whose priority is strictly greater than p by
2 without affecting acceptance.)

2.2 Büchi and Co-Büchi Automata
Büchi and Co-Büchi automata – abbreviated NBAs and NCAs – are NPAs where the image
of the priority function π is contained in {1, 2} and {2, 3}, respectively. In both cases, the
automaton is often denoted A = (Σ, Q, q0, δ, F), where F ⊆ Q+ is called (the set of) final
states and denotes those states with the higher priority (2 for Büchi, 3 for Co-Büchi). The
remaining states Q+ \ F are called non-final states.

2.3 Deterministic and Good-for-Games Automata
An automaton is called deterministic if the image of the transition function δ consists only
of singletons (i.e. is included in

{
{q} | q ∈ Q+

}
. For convenience, δ is therefore often viewed

as a function δ̄ : Q+ × Σ→ Q+ (with δ(q, σ) 7→ {δ̄(q, σ)}).
A nondeterministic automaton is called good-for-games (GFG) if it only relies on a

limited form of nondeterminism: GFG automata can make their decision of how to resolve
their nondeterministic choices on the history at any point of a run – rather than using the
knowledge of the complete word as a nondeterministic automaton normally would – without
changing their language. They can be characterised in many ways, including as automata
that simulate deterministic automata.

1 The question whether or not an automaton can immediately accept or reject is a matter of taste. Often,
immediate rejection is covered by allowing δ to be partial while there is no immediate acceptance. We
allow both – so > and ⊥ are not counted as states – but treat them as accepting and rejecting sink
states, respectively, for technical convenience.

S. Schewe 56:3

We use the following formalisation: a nondeterministic automaton P = (Σ, Q, q0, δ, π)
is good-for-games if there is function ν : q0Q+

∗Σ→ Q+ such that, for every infinite word
α = a0a1a2 . . . ∈ Σω, P has an accepting run ρ′ if, and only if, it has an accepting run
ρ = r0r1r2 . . . ∈ Q+

ω with r0 = q0 and, for all i ∈ N0, ri+1 = ν(r0, . . . , ri; ai).
Broadly speaking, a good-for-games automaton sits in the middle between a nondetermin-

istic and a deterministic automaton: P and ν together define a deterministic automaton
(if such a ν exists, there is a finite state one), but as the ν does not have to be explicitly
provided, P can be more succinct than a deterministic automaton.

2.4 Automata Transformations & Conventions
For an NPA B = (Σ, Q, q0, δ, π) and a state q ∈ Q+, we denote with Bq = (Σ, Q, q, δ, π) the
automaton resulting from B by changing the initial state to q.

There are two standard measures for the size of an automaton P = (Σ, Q, q0, δ, π): the
number |Q| of its states, and the size

∑
q∈Q,a∈Σ

|δ(q, a)| of its transition table.

3 Main Result

We show the following theorem.

I Theorem 1. The following problems are NP-complete (all 20 combinations).
1. Given a good-for-games / deterministic parity / Büchi / Co-Büchi automaton and a

bound k, is there a language equivalent good-for-games parity automaton with at most k
states / entries in its transition table?

2. Given a good-for-games / deterministic Büchi automaton and a bound k, is there a
language equivalent good-for-games Büchi automaton with at most k states / entries in
its transition table?

3. Given a good-for-games / deterministic Co-Büchi automaton and a bound k, is there a
language equivalent good-for-games Co-Büchi automaton with at most k states / entries
in its transition table?

The 20 individual questions are, of course, all very similar. Note, however, that in the ten
cases where a good-for-games automaton is given, its good-for-games property is not checked;
instead we simply do not require the result to be correct where the given automaton is not
good-for games. In particular, the complexity of determining GFG-ness remains an open
research question (except for Büchi [1] and Co-Büchi [6] automata, where it is known to be
tractable).

For inclusion in NP (Section 4), the small good-for-games automaton can be guessed, and
the guess can be validated with standard simulation games (Corollary 5).

NP hardness is established in Section 5 (Theorem 15), it turns out that the known hardness
proof for deterministic Büchi and Co-Büchi automata can be adjusted to good-for-games
automata, providing hardness for all combinations of our main theorem.

4 Inclusion in NP

We start with re-visiting a standard simulation game between a verifier, who wants to establish
language inclusion through simulation, and a spoiler, who wants to destroy the proof. Note
that the spoiler does not try to disprove language inclusion, but merely wants to show that
it cannot be established through simulation.

FSTTCS 2020

56:4 Minimising Good-For-Games Automata Is NP-Complete

4.1 Simulation Game
For two NPAs P1 = (Σ, Q1, q

1
0 , δ1, π1) and P2 = (Σ, Q2, q

2
0 , δ2, π2), we define the

“P2 simulates P1” game, where a spoiler intuitively tries to show that P1 accepts a word not
in the language of P2, as follows.

The game is played on Q1 × Q2 ∪ Q1 × Σ × Q2 and starts in (q1
0 , q

2
0). In a state

(q1, q2) ∈ Q1 × Q2, the spoiler selects a letter σ ∈ Σ and a σ successor q′1 ∈ δ(q1, σ) of q1
for P1 and moves to (q′1, σ, q2). In a state (q′1, σ, q2) ∈ Q1 × Σ×Q2, the verifier selects a σ
successor q′2 ∈ δ(q2, σ) of q2 for P2 and moves to (q′1, q′2).

Verifier and spoiler will together produce a play (q1
0 , q

2
0)(q1

1 , a0, q
2
0)(q1

1 , q
2
1)(q1

2 , a1, q
2
1)

(q1
2 , q

2
2)(q1

3 , a2, q
2
2)(q1

3 , q
2
3)(q1

4 , a3, q
2
3) The verifier wins if, and only if, the run q1

0q
1
1q

1
2q

1
3 . . .

of P1 is rejecting or the run q2
0q

2
1q

2
2q

2
3 . . . of P2 is accepting.

Simulation games have been used to validate GFG-ness right from their introduction [4].

I Lemma 2. If the verifier wins the P2 simulates P1 game, then she wins positionally, and
checking if she wins is in NP.

This is a standard inclusion game, and similar games have e.g. been used in [6].

Proof. The verifier plays a game with two disjunctive (from verifier’s perspective) parity
conditions (as the complement of a parity condition is a parity condition). A parity condition
is in particular a Rabin condition, and the disjunction of Rabin conditions is still a Rabin
condition. Thus, if the verifier can meet her parity objective, she can do so positionally2 [3].
Thus, it suffices to guess the winning strategy of the verifier, and then check (in P)3 if the
spoiler wins his resulting one player game with two conjunctive parity conditions. J

I Lemma 3. Given an NPA P1 and a good-for-games NPA P2, checking L(P1) ⊆ L(P2) is
in NP.

Proof. Consider the “P2 simulates P1” game played on an NPA P1 = (Σ, Q1, q
1
0 , δ1, π1) and

a good-for-games NPA P2 = (Σ, Q2, q
2
0 , δ2, π2).

We first show that spoiler wins this if there is a word α ∈ L(P1) \ L(P2): in this case,
spoiler can guess such a word alongside an accepting run for P1 for α – note that there is no
accepting run of P2 for α, as α /∈ L(P2).

We finally show that verifier wins this game if L(P2) ⊇ L(P1). In this case, verifier can
construct the run q2

0q
2
1q

2
2q

2
3 . . . on the word α the spoiler successively produces. Moreover,

as P2 is good-for-games, the verifier can do this independent of the transitions the spoiler
selects, basing her choices instead on her good-for-games strategy ν2. If α is in L(P2), then
q2
0q

2
1q

2
2q

2
3 . . . is accepting and verifier wins. If α is not in L(P2), then α is not in L(P1) ⊆ L(P2)

either; thus q1
0q

1
1q

1
2q

1
3 . . . is rejecting and verifier wins. J

I Theorem 4. Given an NPA P1 and a good-for-games NPA P2, checking if P1 is good-
for-games and satisfies L(P1) = L(P2) is in NP.

2 A strategy is called positional if it only depends on the current state, not on the history of how one got
there.

3 This problem is actually in NL, as the spoiler can guess the pair of winning priorities and guess a
lasso-like path with an initial part, and a repeating part that starts and ends in the same state and
has the correct dominating priorities for both parity conditions. (This does not have to be a cycle, as
it might be necessary to visit a state once for establishing the dominating priority for either parity
condition.)

S. Schewe 56:5

A similar game is used in [6] to establish that GFG-ness can be decided in EXPTIME.
The new observation here is the inclusions in NP, assuming a GFG automaton is provided.

Proof. We first use the previous lemma to check L(P1) ⊆ L(P2) in NP. For the rest of the
proof, we assume that this test has been passed, such that L(P1) ⊆ L(P2) was established.

We then play the same game with inverse roles, i.e. the “P1 simulates P2” game. The
question if verifier wins is again in NP.

If L(P1) 6= L(P2) holds, then the already established L(P1) ⊆ L(P2) entails that
there is a word α ∈ L(P2) \ L(P1). In this case spoiler can win by guessing such a word
α ∈ L(P2) \ L(P1) alongside an accepting run for P2 for α – note that there is no accepting
run of P1 for α in this case, regardless of whether or not P1 is good-for games.

If P1 is good-for-games and L(P1) = L(P2) holds, then verifier wins (because L(P2) ⊆
L(P1) can be verified in NP using Lemma 3).

Finally, if L(P1) = L(P2) holds and verifier wins, then P1 is good-for-games: this is
because a winning strategy – like the positional strategy that exists (Lemma 2) – for verifier
in the “P1 simulates P2” game transforms a good-for-games strategy ν2 for P2 into a good-
for-games strategy ν1 for P1, and P1 can simply emulate the behaviour of P2 using the
(positional) winning strategy from of the verifier. J

This provides all upper bounds of Theorem 1 when taking into account that k should be
smaller than the provided automaton. (If it is not, then the answer is always “yes”, as the
automaton itself can be used.).

I Corollary 5. All problems from Theorem 1 can be solved in NP.

Note that this does not result in a test whether or not a given automaton is good-for-
games, it merely allows, given a good-for-games automaton, to validate that a second NPA
is both: good-for-games and language equivalent.

For Büchi [1] and Co-Büchi automata [6], it is tractable to check whether or not an
automaton is good-for-games.

5 NP Hardness

In this section we generalise the hardness argument for the minimality of deterministic Büchi
and Co-Büchi automata from [8]. It lifts the reduction from the problem of finding a minimal
vertex cover of a graph to the minimisation of deterministic Büchi automata to a reduction
to the minimisation of good-for-games automata. (A vertex cover is a set of vertices that
covers at least one end point of every edge.) In the graph from Figure 1, the vertices in red
and the vertices in white are both vertex covers, and the red vertices are the only minimal
vertex cover. The reduction first defines the characteristic language of a simple connected
graph; for technical convenience it assumes a distinguished initial vertex.

We show that the states of a good-for-games Büchi (or parity) automaton that recognises
this characteristic language must satisfy side-constraints, which imply that it has at least
2n+ k states, where n is the number of vertices of the graph, and k is the size of its minimal
vertex cover. Moreover, from a good-for-games automaton with s states, we can infer a
vertex cover with size at most s− 2n.

At the same time, it is simple to construct, for a given vertex cover of size k, a deterministic
Büchi automaton of size 2n + k that recognises the characteristic language of this graph.
(Figure 3 shows such a DBA for the example from Figure 1.) This holds in particular for
the trivial vertex cover (which contains all vertices) that results in a DBA with 3n states.

FSTTCS 2020

56:6 Minimising Good-For-Games Automata Is NP-Complete

Figure 1 A nice graph (a connected graph with a dedicated initial vertex) with a 2 vertex cover
(in red). Is a nice graph k coverable? is an NP-complete problem.

Minimising the automaton defined by this trivial vertex cover can therefore be used to
determine a minimal vertex cover for a given simple connected graph, which concludes the
NP hardness argument.

Finally we show how to adjust the argument for minimal Co-Büchi automata, which –
different to deterministic automata, where one can simply use the dual automaton – requires a
small adjustment in the definition of the characteristic language for good-for-games automata.

Returning to the reduction known from deterministic automata, we call a non-trivial
(|V | > 1) simple undirected connected graph Gv0 = (V,E) with a distinguished initial vertex
v0 ∈ V nice. The restriction to nice graphs leaves the problem of finding a minimal vertex
cover NP-complete.

I Lemma 6 ([8]). The problem of checking whether a nice graph Gv0 has a vertex cover of
size k is NP-complete.

Following [8], we define the characteristic language L(Gv0) of a nice graph Gv0 as the
ω-language over V\ = V ∪ {\} (where \ indicates a stop of the evaluation in the next step – it
can be read “stop”) consisting of
1. all ω-words of the form v0

∗v1
+v2

+v3
+v4

+ . . . ∈ V ω with {vi−1, vi} ∈ E for all i ∈ N,
(words where v0, v1, v2, . . . form an infinite path in Gv0), and

2. all ω-words that start with4 v0
∗v1

+v2
+ . . . vn

+\vn ∈ V\
∗ with n ∈ N0 and {vi−1, vi} ∈ E

for all i ∈ N. (Words where v0, v1, v2, . . . , vn form a finite – and potentially trivial – path
in Gv0 , followed by a \ sign, followed by the last vertex of the path v0, v1, v2, . . . , vn, and
by v0 if \ was the first letter.)

We call the ω-words in (1) trace-words, and those in (2) \-words. The trace-words are in V ω,
while the \-words are in V\

ω \ V ω.
Figure 2 shows a deterministic Büchi automaton that recognises the \-words for the nice

graph from Figure 1. The five colours are used as names (or: identifiers) for the vertices

4 this includes words that start with \v0

S. Schewe 56:7

!

!

!

!

!

Figure 2 A deterministic Büchi automaton that recognises the \-words for the nice graph from
Figure 1. The five colours are used as names for the vertices of the nice graph. The colour of the full
(outer) vertices intuitively reflects the colour of the previous vertex seen while traversing an input
word that can still be completed to an accepted \ word. If the automaton reads a vertex (identified
by its colour), which identifies the current vertex or a vertex adjacent to it, it updates the stored
vertex to the one it has read; it blocks (moves to ⊥) when reading a different vertex.
When reading \, it moves to the light inner vertex while keeping the stored colour/vertex, shown by
the colour of its fringe. From a light (inner) vertex, it accepts (moves to >) if it sees the stored
vertex (indicated by the colour of the fringe) next, and blocks (moves to ⊥) otherwise.

of the nice graph. The colour of the full (outer) vertices intuitively reflects the colour of
the previous vertex seen while traversing an input word that can still be completed to an
accepted \ word (initialised to the colour of the dedicated initial vertex of the nice graph, in
this case, •.) If the automaton reads a vertex (here identified by its colour), which identifies
either the current vertex or a vertex adjacent to it, it updates the stored vertex to the one it
has read. If it reads a different vertex, which is not adjacent, it blocks (moves to ⊥).

When reading \, it moves to a light (inner) vertex while keeping the stored colour of the
last vertex seen vertex, shown by the colour of its fringe. From a light (inner) vertex, it
accepts (moves to >) if it sees the stored vertex (indicated by the colour of the fringe) next,
and blocks (moves to ⊥) otherwise.

A word that starts with ••••••••••••\•, for example, is accepted, while words
that start with ••••••••••••\• (wrong colour after \) or ••••••••••••\•
(• and • are not adjacent) are rejected.

Let B be a parity good-for-games automaton that recognises the characteristic language
of Gv0 = (V,E). We call a state of B

a v-state if it can be reached upon an input word v0
∗v1

+v2
+ . . . vn

+ ∈ V ∗, with n ∈ N0
and {vi−1, vi} ∈ E for all i ∈ N, that ends in v = vn (in particular, the initial state of B
is a v0-state), and
a v\-state if it can be reached from a v-state upon reading a \ sign.

We call the union over all v-states the set of vertex-states, and the union over all v\-states
the set of \-states.

FSTTCS 2020

56:8 Minimising Good-For-Games Automata Is NP-Complete

It is not hard to define, for a given nice graph Gv0 = (V,E) with vertex cover C, a
deterministic Büchi automaton BGv0

C = (V\, (V ×{n, \})∪(C×{f}), (v0, n), δ̄, (C×{f})∪{>})
with 2|V |+ |C| states that recognises the characteristic language of Gv0 [8]. (The n and f in
the state refer to non-final and final, respectively.) We simply choose

δ̄
(
(v, n), v′

)
= (v′, f) if {v, v′} ∈ E and v′ ∈ C,

δ̄
(
(v, n), v′

)
= (v′, n) if {v, v′} ∈ E and v′ /∈ C,

δ̄
(
(v, n), v′

)
= (v, n) if v = v′,

δ̄
(
(v, n), v′

)
= (v, \) if v′ = \, and

δ̄
(
(v, n), v′

)
= ⊥ otherwise;

δ̄
(
(v, f), v′

)
= δ̄
(
(v, n), v′

)
, and

δ̄
(
(v, \), v

)
= > and δ̄

(
(v, \), v′

)
= ⊥ for v′ 6= v.

BGv0
C simply has one v\-state for each vertex v ∈ V of Gv0 , one final v-state for each vertex

in the vertex cover C, and one non-final v-state for each vertex v ∈ V of Gv0 . It moves to
the final (accepting) copy (v, f) for a vertex v ∈ C of a v-state only upon taking an edge to
v, but not on a repetition of v.

Figure 3 shows a Büchi automaton that recognises the characteristic language of the nice
graph from Figure 1. Different from the automaton from Figure 2, it also has to consider the
trace-words, who stay in the 7 outer states (depicted as fully coloured in).

The accepting states define a cover, and a cover can be used to select final states – the
automaton from Figure 3 moves to a final state whenever it “enters a vertex” from the cover
shown in Figure 1. This way, every (after stuttering) infinite path sees infinitely many final
states, while every (after stuttering) finite path does not. If the defining set was not a cover,
then there were two adjacent states that are both not part of the cover, and the infinite path
that goes back and forth between them would not be accepted.

I Lemma 7 ([8]). For a nice graph Gv0 = (V,E) with initial vertex v0 and vertex cover C,
the Büchi automaton BGv0

C recognises the characteristic language of Gv0 .

Having seen how to get from a cover to an automaton that recognises the characteristic
language of a nice graph, we now study the other direction.

I Lemma 8. Let Gv0 = (V,E) be a nice graph with initial vertex v0, and let B = (V\, Q, q0, δ, π)
be a good-for-games parity automaton that recognises the characteristic language of Gv0 . Then
the following holds:
1. for all v in V , there is a v-state from which all words that start with \v are accepted – we

call these states the core v-states;
2. for all v in V , there is a core v-state with an odd priority;
3. for all v ∈ V and w ∈ V\ with v 6= w and for every v-state qv, words that start with \w

are not in the language of Bqv
;

4. for all v in V , there is a v\-state from which all words that start with v are accepted – we
call these states the core v\-states;

5. for all v in V and w ∈ V\ with v 6= w and for every v\-state qv\, words that start with w
are not in the language of Bqv\

; and
6. for every edge {v, w} ∈ E, there is a v-state or a w-state with an even priority.

Proof. 1. Let v = vn and let v0, v1, v2, ..., vn be a path in Gv0 . As B recognises L(Gv0) and
is good-for-games, it must, after having read the first n+ 1 or more letters of an input
word v0, v1, v2, ..., vn

ω (using its good-for-games strategy ν), with {vi, vi+1} ∈ E for all
i < n, be in a core v-state, as words that start with this and continue with \v are in
L(Gv0).

S. Schewe 56:9

2. Furthermore, the run B produces (using ν) for v0, v1, v2, ..., vn
ω has a dominating priority

determined by its tail of core v-states, and the core v-state with the highest priority that
occurs infinitely many times must have an odd priority (as the word is not in L(Gv0)).
Consequently, there must be at least one core v-state with an odd priority.

3. If (3) does not hold, a witness would provide a word accepted by B but not in L(Gv0).
4. Let v = vn and let v0, v1, v2, ..., vn be a path in Gv0 . As B recognises L(Gv0) and is

GFG, it must, after having read the first n+ 2 letters of an input word that starts with
v0, v1, v2, ..., vn, \ (using its good-for-games strategy ν), with {vi, vi+1} ∈ E for all i < n,
be in a core v\-state, as words that start with this and continue with v are in L(Gv0).

5. If (5) does not hold, a witness would provide a word accepted by B but not in L(Gv0).
6. Let us consider an arbitrary edge {v, w} ∈ E, v = vn, and the run of B (following ν) on

v0, v1, v2, . . . , vn, (w, v)ω in L(Gv0) (i.e. for all i < n. {vi, vi+1} ∈ E).
The run must be accepting, and, as argued in (1), once the word alternates between v
and w, the run alternates between core v-states and core w-states. Thus, the core v-state
or the core w-state with the highest priority that occurs infinitely often must have an
even priority. J

The sixth claim implies that the set C of vertices with a core vertex-state with even
priority is a vertex cover of Gv0 = (V,E). Thus, B has at least |C| core vertex states with an
even priority. (1–3) provide that B has at least |V | vertex-states with odd priority, and it
follows with (4+5) that there are |V | core \-states that are disjoint from the core vertex-states:

I Corollary 9. For a good-for-games parity automaton B = (V\, Q, q0, δ, π) with s states that
recognises the characteristic language of a nice graph Gv0 = (V,E) with initial vertex v0, the
set C = {v ∈ V | there is a v-state with an even priority} is a vertex cover of Gv0 , and B has
at least 2|V |+ |C| states (s ≥ 2|V |+ |C|), such that |C| ≤ s− 2|V | holds. J

!

!

!

!

!

! !

Figure 3 A minimal GFG (and deterministic) Büchi automaton that recognises the characteristic
language of the nice graph from Figure 1. For a nice graph Gv0 = (V,E), a GFG parity automaton
that recognises its characteristic language needs |V | states reached after reading (the first) \ (the
light, inner states), |V | states with odd priority reachable prior to reading the first \, and, broadly
speaking, sufficiently many states with even priority, such that they identify a cover. The Büchi
automaton shown here is defined by the cover that contains the red states shown in Figure 1.

FSTTCS 2020

56:10 Minimising Good-For-Games Automata Is NP-Complete

Corollary 9 and Lemma 7 immediately imply:

I Corollary 10. Let C be a minimal vertex cover of a nice graph Gv0 = (V,E). Then BGv0
C is

a minimal deterministic Büchi automaton that recognises the characteristic language of Gv0 ,
and there is no good-for-games parity automaton with less states than BGv0

C that recognises
the same language. Moreover, every minimal good-for-games automaton identifies a cover C ′
with |C ′| = |C|. J

This suffices for most cases from Theorem 1, but not for the cases where the automaton
given is a Co-Büchi automaton. To also cover Co-Büchi automata, we change the characteristic
language to the adjusted language L′(Gv0) of a nice graph Gv0 as the ω-language over
V\ = V ∪ {\} that consists of
1. all ω-words of the form v0

∗v1
+v2

+v3
+v4

+ . . . vn
ω ∈ V ω with {vi, vi+1} ∈ E for all i < n,

(words where v0, v1, v2, . . . , vn form a finite (possibly trivial) path in Gv0), and
2. all ω-words that start with5 v0

∗v1
+v2

+ . . . vn
+\vn ∈ V\

∗ with n ∈ N0 and {vi−1, vi} ∈ E
for all i ∈ N. (Words where v0, v1, v2, . . . , vn form a finite – and potentially trivial – path
in Gv0 , followed by a \ sign, followed by the last vertex of the path v0, v1, v2, . . . , vn, and
by v0 if \ was the first letter.)

I Lemma 11. Let Gv0 = (V,E) be a nice graph with initial vertex v0, and let B =
(V\, Q, q0, δ, π) be a good-for-games parity automaton that recognises the adjusted language
L′(Gv0) of Gv0 . Then the following holds:
1. for all v in V , there is a v-state from which all words that start with \v are accepted – we

call these states the core v-states;
2. for all v in V , there is a core v-state with an even priority;
3. for all v ∈ V and w ∈ V\ with v 6= w and for every v-state qv, words that start with \w

are not in the language of Bqv
;

4. for all v in V , there is a v\-state from which all words that start with v are accepted – we
call these states the core v\-states;

5. for all v in V and w ∈ V\ with v 6= w and for every v\-state qv\, words that start with w
are not in the language of Bqv\

; and
6. for every edge {v, w} ∈ E, there is a v-state or a w-state with an odd priority.

The changes in the proof compared to Lemma 8 are simply to replace even and odd
accordingly.

With the same argument as before we get the same corollary:

I Corollary 12. For a good-for-games parity automaton with s states that recognises the
adjusted characteristic language of a nice graph Gv0 = (V,E) with initial vertex v0, the set
C = {v ∈ V | there is a v-state with an even priority} is a vertex cover of Gv0 , and B has at
least 2|V |+ |C| states (s ≥ 2|V |+ |C|), such that |C| ≤ s− 2|V | holds.

I Lemma 13. For a nice graph Gv0 = (V,E) with initial vertex v0 and vertex cover C, the
Co-Büchi automaton6 BGv0

C recognises the adjusted language of Gv0 .

Proof. We argue separately that the trace-words and \-words accepted by BGv0
C are exactly

the trace-words and \-words, respectively, in L′(Gv0).

5 this includes words that start with \v0
6 The automaton is the same as before, but read as a Co-Büchi automaton.

S. Schewe 56:11

For a trace-word α = v1v2v3 . . . ∈ V ω, BGv0
C has the run (v0, n)(v1, x1)(v2, x2)(v3, x3) . . .

(with xi ∈ {n, f} for all i ∈ N) if, for all i ∈ N, either vi−1 = vi or {vi−1, vi} ∈ E holds;
otherwise the automaton blocks (has a tail of ⊥ states) at imin-th letter, where imin is the
minimal i such that vi−1 6= vi and {vi−1, vi} /∈ E. A trace-word where the automaton blocks
is rejected by BGv0

C and not in L′(Gv0).
We now consider those trace-words, for which BGv0

C does not block. For these words, we
call the set I = {i ∈ N | {vi−1, vi} ∈ E

}
transition indices. Now α ∈ L′(Gv0) holds if, and

only if, I is finite. If I is finite, we call its maximal element imax, and set imax to 0 if I is empty.
The run of BGv0

C on α is then (v0, n)(v1, x1) . . . (vimax−1, ximax−1)(vimax , ximax)(vimax , n)ω; it
has a tail of non-final states (vimax , n), and α is therefore accepted by BGv0

C .
If I is infinite, we use the infinite ascending chain i1 < i2 < i3 < . . . with I = {in | n ∈ N}.

Then, for all k ∈ N, vik−1 6= vik
= vik+1−1 6= vik+1 holds and {vik

, vik+1} ∈ E. {vik
, vik+1} ∈

E entails that the cover C must contain vik
or vik+1 , and it follows with vik−1 6= vik

and
vik+1−1 6= vik+1 that the respective position in the run is (vik

, f) or (vik+1 , f) (in other words:
xik

= f or xik+1 = f). Thus, the run contains infinitely many final states and is rejecting.
Thus, we have shown that BGv0

C accepts the right set of trace-words. We now continue
with the simpler proof that it accepts the right set of \-words.

First, words starting with \v0 are accepted and in L′(Gv0), while words starting with \v
and v 6= v0 are rejected and not in L′(Gv0).

A \-word that starts with α = v1v2v3 . . . vn\w ∈ V +\V\ is in L′(Gv0) if, and only if,
1. vi−1 = vi or {vi−1, vi} ∈ E holds for all i ≤ n, and
2. vn = w.
If they both hold, the (accepting) run of BGv0

C has the form
(v0, n)(v1, x1)(v2, x2)(v3, x3) . . . (vn, xn)(vn, \)>ω.

If (1) holds but (2) does not, the (rejecting) run of BGv0
C has the form

(v0, n)(v1, x1)(v2, x2)(v3, x3) . . . (vn, xn)(vn, \)⊥ω.
If (1) does not hold and k ≤ n is the smallest index with vi−1 6= vi and {vi−1, vi} /∈ E,

the (rejecting) run of BGv0
C has the form (v0, n)(v1, x1)(v2, x2)(v3, x3) . . . (vk−1, xk−1)⊥ω.

As this covers all cases, we get L(BGv0
C) = L′(Gv0). J

Corollary 12 and Lemma 13 immediately imply:

I Corollary 14. Let C be a minimal vertex cover of a nice graph Gv0 = (V,E). Then BGv0
C

is a minimal deterministic Co-Büchi automaton that recognises the adjusted characteristic
language of Gv0 , and there is no good-for-games parity automaton with less states than BGv0

C

that recognises the same language. Moreover, every minimal good-for-games automaton
identifies a cover C ′ with |C ′| = |C|. J

The Corollaries 10 and 14 provide us with the hardness result.

I Theorem 15. The following problems are NP hard.
Given a good-for-games / deterministic Büchi automaton and a bound k, is there a
language equivalent good-for-games Büchi automaton with at most k states / entries in
its transition table (all 4 combinations)?
Given a good-for-games / deterministic Co-Büchi automaton and a bound k, is there a
language equivalent good-for-games Co-Büchi automaton with at most k states / entries
in its transition table (all 4 combinations)?
Given a good-for-games / deterministic parity / Büchi / Co-Büchi automaton and a
bound k, is there a language equivalent good-for-games parity automaton with at most k
states / entries in its transition table (all 12 combinations)?

FSTTCS 2020

56:12 Minimising Good-For-Games Automata Is NP-Complete

6 Discussion

We have established that determining if a good-for-games automaton with Büchi, Co-Büchi,
or parity condition and state based acceptance is minimal, or that there is a GFG automaton
with size up to k, is NP-complete. Moreover, this holds regardless of whether the starting
automaton is given as a (Büchi, Co-Büchi, or parity) good-for-games automaton, or if it is
presented as a (Büchi, Co-Büchi, or parity) deterministic automaton.

This drags three open questions into the limelight. The first is the complexity of testing
whether or not a given nondeterministic automaton is good-for-games. Our results give no
answer to this question: it simply accepts that a given automaton is good-for-games, and
only guarantees a correct answer if the input is valid. GFG-ness is, however, known to be
tractable for Büchi [1] and Co-Büchi [6] automata, and the extension to the more expressive
class of parity good-for-games automata is active research.

It also raises the question if the difference is in good-for-games automata being inherently
simpler to minimise, or if it is a property of choosing the less common transition based
acceptance: the second open challenge is whether the tractability of minimising Co-Büchi
good-for-games automata forebears the tractability of minimising the general class of parity
good-for-games automata, while the third challenge is the question of whether NP hardness
extends to transition based deterministic Büchi, Co-Büchi, and parity automata: the hard
language used in this paper is not hard at all for transition based acceptance, as one can
simply use final transitions between different v-states (and non-final self loops), cf. Figure 4.
This could lend another argument for proliferating transition based acceptance.

In addition to the “transition vs. state based acceptance” question, another question is
whether or not nondeterminism is the right starting point for GFG-ness, or if alternation is
the better choice [2]. For such alternating automata, most of the succinctness and complexity
questions for membership and minimisation are wide open.

!

!

!

!

!

Figure 4 A minimal DBA with transition based acceptance for the running example.

S. Schewe 56:13

References
1 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recogniz-

able. In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018,
December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 16:1–16:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.16.

2 Udi Boker and Karoliina Lehtinen. Good for Games Automata: From Nondeterminism to
Alternation. In Wan Fokkink and Rob van Glabbeek, editors, 30th International Conference
on Concurrency Theory (CONCUR 2019), volume 140 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 19:1–19:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2019.19.

3 E. Allen Emerson. Automata, tableaux and temporal logics. In Proceedings of the International
Conference on Logic of Programs (ICLP 1985), 17–19 June, Brooklyn, New York, USA, volume
193 of Lecture Notes in Computer Science, pages 79–88. Springer-Verlag, 1985.

4 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Zoltán
Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of
Lecture Notes in Computer Science, pages 395–410. Springer, 2006. doi:10.1007/11874683_26.

5 Tao Jiang and Bala Ravikumar. Minimal NFA problems are hard. SIAM J. Comput.,
22(6):1117–1141, 1993. doi:10.1137/0222067.

6 Denis Kuperberg and Michał Skrzypczak. On determinisation of good-for-games automata.
In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 299–310. Springer, 2015. doi:10.1007/978-3-662-47666-6_24.

7 Bader Abu Radi and Orna Kupferman. Minimizing GFG transition-based automata. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 100:1–100:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.100.

8 Sven Schewe. Beyond hyper-minimisation—minimising DBAs and DPAs is NP-complete. In
Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010,
Chennai, India, volume 8 of LIPIcs, pages 400–411. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.400.

9 Sven Schewe. Minimising good-for-games automata is NP complete. CoRR, abs/2003.11979,
2020. arXiv:2003.11979.

FSTTCS 2020

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.1007/11874683_26
https://doi.org/10.1137/0222067
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.4230/LIPIcs.ICALP.2019.100
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
http://arxiv.org/abs/2003.11979

	Introduction
	Automata
	Nondeterministic Parity Automata
	Büchi and Co-Büchi Automata
	Deterministic and Good-for-Games Automata
	Automata Transformations & Conventions

	Main Result
	Inclusion in NP
	Simulation Game

	NP Hardness
	Discussion

