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Abstract

We study the time-bounded reachability problem for continuous-time Markov de-
cision processes (CTMDPs) and games (CTMGs). Existing techniques for this
problem use discretisation techniques to partition time into discrete intervals of
size ε, and optimal control is approximated for each interval separately. Current
techniques provide an accuracy of O(ε2) on each interval, which leads to an in-
feasibly large number of intervals. We propose a sequence of approximations that
achieve accuracies of O(ε3), O(ε4), and O(ε5), that allow us to drastically reduce
the number of intervals that are considered. For CTMDPs, the performance of
the resulting algorithms is comparable to the heuristic approach given by Buch-
holz and Schulz [1], while also being theoretically justified. All of our results
generalise to CTMGs, where our results yield the first practically implementable
algorithms for this problem. We also provide memoryless strategies for both play-
ers that achieve similar error bounds.
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1. Introduction

Markov decision processes (MDPs) and continuous-time Markov decision
processes (CTMDPs) are powerful stochastic models which have applications in
many areas including automated planning, operations research, and decision sup-
port systems [3, 4, 5, 6]. Over the past 15 years, probabilistic models are being
used extensively in the formal analysis of complex systems, including networked,
distributed, and most recently, biological systems. Probabilistic model checking
for discrete-time MDPs and continuous-time Markov chains (CTMCs) has been
successfully applied to these rich academic and industrial applications [7, 8, 9, 10].
However, for continuous-time Markov decision processes (CTMDPs), which mix
the nondeterminism of MDPs with the continuous-time setting of CTMCs [4],
and continuous-time Markov games (CTMGs), which combine both helpful and
hostile nondeterminism, practical approaches are less well developed.

This article studies the time-bounded reachability problem for CTMDPs and
CTMGs, which is of paramount importance for model checking [11]. The time-
bounded reachability problem is to determine, for a given set of goal locations G
and time bound T , the best way to resolve the nondeterminism in order to max-
imise (or minimise) the probability of reaching G before the deadline T .

For practical concerns it is often sufficient to closely approximate the time-
bounded reachability. For CTMCs the approximation problem can be solved effi-
ciently by uniformisation or by standard numerical approaches like Runge-Kutta,
but both methods are not applicable in the presence of nondeterministic choices.
Fourth order Runge-Kutta requires that the target function can be continuously dif-
ferentiated four times, but at the points in time where the nondeterministic choice
changes, the target function of CTMDPs and CTMGs can be differentiated only
once.

The entity that resolves the nondeterminism in a CTMDP or a CTMG is called
a scheduler (or strategy). The different classes of schedulers are contrasted by
Neuhäußer et. al. [12], and they show that late schedulers are the most powerful
class. Also it is possible to transfer results for late schedulers to early schedulers
using a model transformation [13]. Several algorithms have been given to ap-
proximate the time-bounded reachability probabilities of CTMDPs for late sched-
ulers [1, 14, 15, 16].
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Technique π = 10−7 π = 10−9 π = 10−11

Current techniques 1, 000, 000, 000 100, 000, 000, 000 10, 000, 000, 000, 000

Double ε-nets 81, 650 816, 497 8, 164, 966

Triple ε-nets 3, 219 14, 939 69, 337

Quadruple ε-nets 605 1, 911 6, 043

Table 1: The number of intervals needed by our algorithms for precisions 10−7, 10−9, and 10−11.

State-of-the-art techniques for solving this problem are based on different
forms of discretisation [1]. This technique splits the time bound T into small
intervals of length ε. Optimal control is approximated for each interval sepa-
rately, and these approximations are combined to produce the final result. Current
techniques can approximate optimal control on an interval of length ε with an ac-
curacy of O(ε2). However, to achieve a precision of π with these techniques, one
must choose ε ≈ π/T , which leads to O(T 2/π) many intervals. Since the desired
precision is often high (it is common to require that π ≤ 10−6), this leads to an
infeasibly large number of intervals that must be considered by the algorithms.

Our contribution. In this article we present a method of obtaining larger in-
terval sizes that satisfies both theoretical and practical concerns. Our approach is
to provide more precise approximations for each ε length interval. While current
techniques provide an accuracy of O(ε2), we propose a sequence of approxima-
tions, called double ε-nets, triple ε-nets, and quadruple ε-nets, with accuracies
O(ε3),O(ε4), andO(ε5), respectively. Since these approximations are much more
precise on each interval, they allow us to consider far fewer intervals while still
maintaining high precision. For example, Table 1 gives the number of intervals
considered by our algorithms, in the worst case, for a normed CTMDP with time
bound T = 10.

Of course, in order to become more precise, we must spend additional compu-
tational effort. However, the cost of using double ε-nets instead of using current
techniques requires only an extra factor of log |Σ|, where Σ is the set of actions.
Thus, in almost all cases, the large reduction in the number of intervals far out-
weighs the extra cost of using double ε-nets. Our worst case running times for
triple and quadruple ε-nets are not so attractive: triple ε-nets require an extra
|L| · |Σ|2 factor over double ε-nets, where L is the set of locations, and quadru-
ple ε-nets require yet another |L| · |Σ|2 factor over triple ε-nets. However, these
worst case running times only occur when the choice of optimal action changes
frequently, and we speculate that the cost of using these algorithms in practice is
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much lower than our theoretical worst case bounds. Our experimental results with
triple ε-nets support this claim.

Organisation of the article. We first discuss related work in Section 2. Then, we
recall the model Markov games and notations needed in Section 3. We present
our main result in Section 4. We conclude the article in Section 5 by providing
experimental supports of our results.

2. Related Work

CTMDPs have been extensively studied in the control community. The analy-
sis there has been focused on optimising expected reward [17, 6, 5, 3, 18]. Various
techniques, including discretisation as well as value and strategy iteration, have
been exploited for the analysis.

Baier et al. [19] have first studied the model checking problem for CTMDPs,
in which they provide an algorithm that computes time-bounded reachability prob-
abilities in globally uniform CTMDPs. Their approach refers only to the class
of time-abstract schedulers, which are strictly less powerful than the schedulers
we consider in this work. Although such schedulers do have access to the se-
quence of states that have been visited, they do not have access to the time.
Time-abstract schedulers have been used for analysing various academic case
studies, see [20, 21]. The existence of optimal time-abstract schedulers for ar-
bitrary CTMDPs and their game extensions is studied, independently, in [22, 23]
and [24].

It has already been pointed out in [19] that the time-independent class
of schedulers is strictly less powerful than the time-dependent class. Later,
in [12, 25], notions of early and late time-dependent schedulers are introduced
for locally uniform CTMDPs. Early schedulers make their decision upon entering
a state, whereas late schedulers may wait until the sojourn time expires and then
choose the next action. Their result shows that late time-dependent schedulers are
the most powerful class of schedulers. The notion of late schedulers is generalised
to arbitrary CTMDPs in [13].

The standard discretisation technique has then been exploited in [15, 16]
for computing the maximal probabilistic reachability under early and late time-
dependent schedulers. The number of steps in the discretisation based approach is
high: it is reciprocal in the required precision π, and quadratic in λT . Here λ de-
notes the uniformisation rate of the model, and T denotes the time bound. Slight
improvement of the bound is reported in [14, 26]. The discretisation approach has
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been extended to more powerful models. In [27, 28], a compositional framework
has been developed for models with continuous-time, probabilistic and nonde-
terministic choices. The model is coined as Markov Automata [27, 28], which
can be considered as an extension of CTMDPs and a related model interactive
Markov chains [29]. In [30, 31], the discretisation technique is extended to anal-
yse Markov automata.

A recent article of Buchholz and Schulz [1] has addressed this problem for
practical applications, by allowing the interval sizes to vary. In addition to com-
puting an approximation of the maximal time-bounded reachability probability,
which provides a lower bound on the optimum, they also compute an upper
bound. When the upper and lower bounds do not diverge too much, the inter-
val can be extended indefinitely. In applications, where the optimal choice of
action changes infrequently, this idea allows their algorithm to consider far fewer
intervals while still maintaining high precision. However, from a theoretical per-
spective, their algorithm is not particularly satisfying. Their method for extending
interval lengths depends on a heuristic, and in the worst case their algorithm may
consider O(T 2/π) intervals, which is not better than other discretisation based
techniques.

Further, an added advantage of our techniques is that they can be applied to
continuous-time Markov games as well as to CTMDPs, whereas Buchholz and
Schulz restrict their analysis to CTMDPs. Moreover, previous work on CTMGs
has mostly been restricted to simplified settings, such as the time-abstract set-
ting. Therefore, to the best of our knowledge, we present the first practically
implementable approximation algorithms for the time-dependent time-bounded
reachability problem in CTMGs. Each of our approximations also provides mem-
oryless strategies, i.e., strategies only depending on the states, for both players
that achieve similar error bounds.

For a thorough comparative evaluation of the different approximation methods
for CTMDPs, we refer to the very recent study by Butkova et al. [32].

Finally, we discuss how our approach is related to numerical methods. In the
numerical evaluations of CTMCs, numerical methods like collocation techniques
(like the Runge-Kutta method) play an important role. In the CTMDP setting,
these methods cannot realise the precision they can realise in CTMCs, because the
functor describing the dynamics in the Bellman equation is not smooth enough:
it is not even differentiable. We discuss the impact in an appendix. A simple
illustrating example is given in Appendix Appendix A. Our approach is an appli-
cation of Picard’s iteration [33], which uses the traditional Newton approximation
for the Bellman equations [4] as a starting point.
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Using Picard’s iteration overcomes the numerical problems attached to ap-
proaches used for Markov chains, such as Runge-Kutta methods. As opposed to
these techniques, we do not require the high degree of smoothness, which is not
present in the Bellman equation due to min and max operators.

We derive guarantees for the precision of our techniques for all ε-nets and dis-
cuss the generation of near optimal schedulers as witnesses or counter examples.
We have chosen to use memoryful schedulers for this. This may be counter in-
tuitive at first glance, as the memoryless schedulers obtained by ‘staying’ on the
same level of the ε-net would be simpler, while offering the same order of preci-
sion. However, we failed to establish similar constant factors for such memoryless
schedulers.

3. Preliminaries

In this section we recall the model Markov games and CTMDPs. We recall the
notion of schedulers, strategies and the characterisation of optimal time-bounded
reachability in the game setting. To simplify the technical development, we then
argue that it is sufficient to study the normed Markov games, i.e., games with the
same uniformisation rate.

3.1. Markov Games
For a finite set L, a distribution ν : L → [0, 1] over L is a function satisfying∑
l∈L ν(l) = 1. Below we denote Dist(L) the set of distributions over L.

Definition 1. A continuous-time Markov game (or simply Markov game) is a tuple
(L,Lr, Ls,Σ,R, ν), consisting of a finite set L of locations, which is partitioned
into locations Lr (controlled by a reachability player) and Ls (controlled by a
safety player), a finite set Σ of actions, a rate matrix R : (L × Σ × L) → Q>0,
and an initial distribution ν ∈ Dist(L).

We require that the following side-conditions hold: For all locations l ∈ L,
there must be an action a ∈ Σ such that R(l, a, L) :=

∑
l′∈LR(l, a, l′) > 0,

which we call enabled. We denote the set of enabled actions in l by Σ(l). We
define the size |M| of a Markov game as the number of non-zero rates in the rate
matrix R.

A Markov game is called uniform with uniformisation rate λ, if R(l, a, L) = λ
holds for all locations l and enabled actions a ∈ Σ(l). We further call a Markov
game normed, if its uniformisation rate is 1. The semantics of Markov games is
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Figure 1: Left: a normed Markov game. Right: the function f within [0, 4] for lR and lS .

given by pure stochastic processes obtained after resolving the nondeterministic
choices using strategies; the details are given in the following subsection.

As a running example, we will use the normed Markov game shown in the left
half of Figure 1. Locations belonging to the safety player are drawn as circles, and
locations belonging to the reachability player are drawn as rectangles. The self-
loops of the normed Markov game are not drawn, but rates assigned to the self
loops can be derived from the other rates: for example, we have R(lR, a, lR) =
0.8. The locations G and ⊥ have only a single enabled action leading to itself,
which is omitted in the drawing, and there is only a single enabled action for l. It
therefore does not matter which player owns l, G, and ⊥.

3.2. Schedulers and Strategies
We consider Markov games in a time interval [0, T ] with T ∈ R≥0. The

nondeterminism in the system needs to be resolved by a pair of strategies for
the two players which together form a scheduler for the whole system. We use
Pathsr and Pathss to denote the sets of finite paths l0

a0,t0−−→ l1 . . .
an−1,tn−1−−−−−−→ ln

ending with location ln ∈ Lr and ln ∈ Ls, respectively. Formally, a strategy is
a function in Pathsr/s × [0, T ] → Σ. We use Sr and Ss to denote the strategies
of reachability player and the strategies of safety player, respectively. We use Πr

and Πs to denote the set of all strategies for the reachability and safety players,
respectively, and we use Π to denote Πr ∪ Πs. (For technical reasons one has to
restrict the schedulers to those which are measurable. This restriction, however, is
of no practical relevance. In particular, simple piecewise constant timed-positional
strategies L× [0, T ]→ Σ suffice for optimal scheduling [13, 15, 4].)

If we fix a pair Sr,Ss of strategies for the reachability player and the safety
player, respectively, we obtain a scheduler Sr+s that resolves all nondeterministic
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choices in the Markov game. This results in a deterministic stochastic process
MSr+s , which can be seen as a time inhomogeneous Markov chain. For t ≤ T ,
we use PrSr+s(t) to denote the transient distribution at time t over S under the
scheduler Sr+s.

Given a Markov gameM, a goal region G ⊆ L, and a time bound T ∈ R≥0,
we are interested in the optimal probability of being in a goal state at time T (and
the corresponding pair of optimal strategies). This is given by:

sup
Sr∈Πr

inf
Ss∈Πs

∑
l∈G

PrSr+s(l, T ),

where PrSr+s(l, T ) := PrSr+s(T )(l). It is commonly referred to as the maximum
time-bounded reachability probability problem in the case of CTMDPs with a
reachability player only. For t ≤ T , we define f : L × R≥0 → [0, 1], to be the
optimal probability to be in the goal region at the time bound T , assuming that we
start in location l and that t time units have passed already. By definition, it holds
then that f(l, T ) = 1 if l ∈ G and f(l, T ) = 0 if l 6∈ G. Optimising the vector of
values f(·, 0) then yields the optimal value and its optimal strategy.

Let us return to the example shown in Figure 1. The right half of the figure
shows the optimal reachability probabilities, as given by f , for the locations lR
and lS when the time bound T = 4. The points t1 ≈ 1.123 and t2 ≈ 0.609 rep-
resent the times at which the optimal strategies change their decisions. Before t1
it is optimal for the reachability player to use action b at lR, but afterwards the
optimal choice is action a. Similarly, the safety player uses action b before t2, and
switches to a afterwards.

3.3. Characterisation of f
We define a matrix Q such that Q(l, a, l′) = R(l, a, l′) if l′ 6= l and

Q(l, a, l) = −∑l′ 6=lR(l, a, l′). The optimal function f can be characterised as
a set of differential equations [4], see also [17, 6]. For each l ∈ L we define
f(l, T ) = 1 if l ∈ G, and 0 if l 6∈ G. Otherwise, for t < T , we define:

−ḟ(l, t) = opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · f(l′, t), (1)

where opt ∈ {max,min} is max for reachability player locations and min for
safety player locations. We will use the opt-notation throughout this article.

Using the matrix R, Equation (1) can be rewritten to:

−ḟ(l, t) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (f(l′, t)− f(l, t)) . (2)
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For uniform Markov games, we simply have Q(l, a, l) = R(l, a, l) − λ, with
λ = 1 for normed Markov games. This also provides an intuition for the fact that
uniformisation does not alter the reachability probability: the rate R(l, a, l) does
not appear in (1).

3.4. Uniformisation
We will present our results for normed Markov games only. However, we ar-

gue that our algorithms for normed Markov games can be applied to solve Markov
games that are not normed.

We first show how our algorithms can be used to solve uniform Markov games,
and then argue that this is sufficient to solve general Markov games. In order to
solve uniform Markov games with arbitrary uniformisation rate λ, we will define
a corresponding normed Markov game in which time has been compressed by a
factor of λ. More precisely, for each Markov game M = (L,Lr, Ls,Σ,R, ν)
with uniform transition rate λ > 0, we defineM‖·‖ = (L,Lr, Ls,Σ,P, ν) where
P = 1

λ
R, which is the Markov game that differs fromM only in the rate matrix.

The following lemma allows us to translate solutions ofM‖·‖ toM.

Lemma 2. For every uniform Markov gameM, an approximation of some pre-
cision π of the optimal time-bounded reachability probabilities and strategies in
M‖·‖ for the time bound T is also an approximation of precision π of the optimal
time-bounded reachability probabilities and strategies inM for the time bound T

λ
.

Proof. To prove this claim, we define the bijection b : Π[M‖·‖]→ Π[M] between
schedulers ofM‖·‖ andM that maps each scheduler S ∈ Π[M‖·‖] to a scheduler
S ′ ∈ Π[M] with S ′(l, t) = S(l, λt) for all t ∈ [0, T ]. In other words, we map
each scheduler ofM‖·‖ to a scheduler ofM in which time has been stretched by
a factor of λ. It is easy to see that the time-bounded reachability probability for
time bound T inM under S ′ = b(S) is equivalent to the time-bounded reacha-
bility probability for time bound λT forM‖·‖ under S. This bijection therefore
proves that the optimal time-bounded reachability probabilities are the same in
both games, and it also provides a procedure for translating approximately opti-
mal strategies of the gameM‖·‖ to the gameM. Since the optimal reachability
probabilities are the same in both games, an approximation of the optimal reach-
ability probability inM‖·‖ with precision π must also be an approximation of the
optimal reachability probability inM‖·‖ with precision π.

In order to solve general Markov games we can first uniformise them, and then
apply Lemma 2. IfM = (L,Lr, Ls,Σ,R, ν) is a continuous-time Markov game,
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then we define the uniformisation of M as unif(M) = (L,Lr, Ls,Σ,R
′, ν),

where R′ is defined as follows. If λ = maxl∈L maxa∈Σ(l) R(l, a, L \ {l}), then we
define, for every pair of locations l, l′ ∈ L, and every action a ∈ Σ(l):

R′(l, a, l′) =

{
R(l, a, l′) if l 6= l′,

λ−R(l, a, L) if l = l′.

Previous work has noted that, for the class of late schedulers, the optimal time-
bounded reachability probabilities and schedulers inM are identical to the opti-
mal time-bounded reachability probabilities and schedulers in unif(M) [13]. To
see why, note that Equation (2) does not refer to the entry R′(l, a, l), and therefore
the modifications made to the rate matrix by uniformisation can have no effect on
the choice of optimal action.

Lemma 3. [13] For every continuous-time Markov game M, the optimal time-
bounded reachability probabilities and schedulers ofM are identical to the opti-
mal time-bounded reachability probabilities and schedulers of unif(M).

Therefore, we have shown the following lemma, which states that our algo-
rithms for normed Markov games can also be applied to arbitrary Markov games.

Lemma 4. We can adapt an O(f(M)) time algorithm for normed Markov games
to solve an arbitrary Markov game in time O(f(M) · λ), where λ is the uniformi-
sation rate ofM.

We are particularly interested in Markov games with a single player, which are
continuous-time Markov decision processes (CTMDPs). In CTMDPs all positions
belong to the reachability player (L = Lr), or to the safety player (L = Ls), de-
pending on whether we analyse the maximum or minimum reachability probability
problem.

4. Approximating Optimal Control for Normed Markov Games

In this section we describe ε-nets, which are a technique for approximat-
ing optimal values and strategies in a normed continuous-time Markov game.
Thus, throughout the whole section, we fix a normed Markov game M =
(L,Lr, Ls,Σ,R, ν).

Our approach to approximating optimal control within the Markov game is
to break time into intervals of length ε, and to approximate optimal control sep-
arately in each of the dT

ε
e distinct intervals. Optimal time-bounded reachability
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probabilities are then computed iteratively for each interval, starting with the final
interval and working backwards in time. The error made by the approximation in
each interval is called the step error. In Section 4.1 we show that if the step error
in each interval is bounded, then the global error made by our approximations is
also bounded.

Our results begin with a simple approximation that finds the optimal action at
the start of each interval, and assumes that this action is optimal for the duration of
the interval. We refer to this as the single ε-net technique, and we will discuss this
approximation in Section 4.2. While it only gives a simple linear function as an
approximation, this technique gives error bounds of O(ε2), which is comparable
to existing techniques.

However, single ε-nets are only a starting point for our results. Our main ob-
servation is that, if we have a piecewise polynomial approximation of degree c
that achieves an error bound of O(εk), then we can compute a piecewise poly-
nomial approximation of degree c + 1 that achieves an error bound of O(εk+1).
Thus, starting with single ε-nets, we can construct double ε-nets, triple ε-nets,
and quadruple ε-nets, with each of these approximations becoming increasingly
more precise. The construction of these approximations will be discussed in Sec-
tions 4.3 and 4.4.

In addition to providing an approximation of the time-bounded reachability
probabilities, our techniques also provide memoryless strategies for both players.
For each level of ε-net, we will define two approximations: the function p1 is
the approximation for the time-bounded reachability probability given by single
ε-nets, and the function g1 gives the reachability probability obtained by follow-
ing the memoryless strategy that is derived from p1. This notation generalises to
deeper levels of ε-nets: the functions p2 and g2 are produced by double ε-nets, and
so on.

We will use E(k, ε) to denote the difference between pk and f . In other words,
E(k, ε) gives the difference between the approximation pk and the true optimal
reachability probabilities. We will use Es(k, ε) to denote the difference between gk
and f . We defer formal definition of these measures to subsequent sections. Our
objective in the following subsections is to show that the step errors E(k, ε) and
Es(k, ε) are in O(εk+1), with small constants.

4.1. Step Error and Global Error
In subsequent sections we will prove bounds on the ε-step error made by our

approximations. This is the error that is made in a single interval of length ε.
However, in order for our approximations to be valid, they must provide a bound
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on the global error, which is the error made by our approximations over every ε
interval. In this section, we prove that, if the ε-step error of an approximation
is bounded, then the global error of the approximation is bounded by the sum of
these errors.

We define f : [0, T ] → [0, 1]|L| as the vector valued function f(t) 7→⊗
l∈L f(l, t) that maps each point of time to a vector of reachability probabili-

ties, with one entry for each location. Given two such vectors f(t) and p(t), we
define the maximum norm ‖f(t)−p(t)‖ = max{|f(l, t)−p(l, t)| | l ∈ L}, which
gives the largest difference between f(l, t) and p(l, t).

We also introduce notation that will allow us to define the values at the start
of an ε interval. For each interval [t − ε, t], we define f tx : [t − ε, t] → [0, 1]|L| to
be the function obtained from the differential equations (1) when the values at the
time t are given by the vector x ∈ [0, 1]|L|. More formally, if τ = t then we define
f tx(τ) = x, and if t− ε ≤ τ < t and l ∈ L then we define:

−ḟ tx(l, τ) = opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′)f tx(l
′, τ). (3)

The following lemma states that if the ε-step error is bounded for every inter-
val, then the global error is bounded by the sum of these errors.

Lemma 5. Let

1. f be a function obtained from the differetnial equations (1),
2. p be an approximation of f that satisfies ‖f(t) − p(t)‖ ≤ µ for some time

point t ∈ [0, T ], and
3. ‖f tp(t)(t− ε)− p(t− ε)‖ ≤ ν for some ε ≥ 0.

Then we have ‖f(t− ε)− p(t− ε)‖ ≤ µ+ ν.

Proof. Let τ ∈ [0, ε]. We prove first that the maximum norm cannot diverge (to
the left) by showing ‖f(t − τ) − f tp(t)(t − τ)‖ ≤ µ. In the proof, we assume
‖f(t−τ)−f tp(t)(t−τ)‖ > 0, remarking that ‖f(t−τ)−f tp(t)(t−τ)‖ = 0 implies
f = f tp(t).

Let l∗ be a maximising location, such that

1. f tp(t)(l
∗, t − τ) − f(l∗, t − τ) = ‖f(t − τ) − f tp(t)(t − τ)‖ holds and l∗ is

owned by the safety player
2. f tp(t)(l

∗, t − τ) − f(l∗, t − τ) = ‖f(t − τ) − f tp(t)(t − τ)‖ holds and l∗ is
owned by the reachability player,
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3. f(l∗, t − τ) − f tp(t)(l∗, t − τ) = ‖f(t − τ) − f tp(t)(t − τ)‖ holds and l∗ is
owned by the safety player.

4. f(l∗, t − τ) − f tp(t)(l∗, t − τ) = ‖f(t − τ) − f tp(t)(t − τ)‖ holds and l∗ is
owned by the reachability player, or

We complete the proof only for the first case, remarking that the proofs for all
cases are quite similar. By definitions, we have:

−ḟ(l∗, t− τ) = min
a∈Σ(l∗)

∑
l∈L

R(l∗, a, l)(f(l, t− τ)− f(l∗, t− τ)).

Let a∗ be a minimising action, then we have:

−ḟ(l∗, t− τ) =

(∑
l∈L

R(l∗, a∗, l)f(l, t− τ)

)
− f(l∗, t− τ)

Further, we can derive:

ḟ(l∗, t− τ)− ḟ tp(t)(l∗, t− τ) = f(l∗, t− τ)−
(∑

l∈L

R(l∗, a∗, l)f(l, t− τ)

)

−f tp(t)(l∗, t− τ) + min
a∈Σ(l∗)

(∑
l∈L

R(l∗, a, l)f tp(t)(l, t− τ)

)

≤ f(l∗, t− τ)−
(∑

l∈L

R(l∗, a∗, l)f(l, t− τ)

)

−f tp(t)(l∗, t− τ) +

(∑
l∈L

R(l∗, a∗, l)f tp(t)(l, t− τ)

)
.

Taking into account that
∑
l∈L

R(l∗, a∗, l) describes an affine combination and

that f tp(t)(l, t − τ) − f(l, t − τ) ≤ f tp(t)(l
∗, t − τ) − f(l∗, t − τ) holds (as we are

in case (1)), this implies ḟ(l∗, t− τ)− ḟ tp(t)(l∗, t− τ) ≤ 0, and thus

ḟ(l∗, t− τ) ≤ ḟ tp(t)(l
∗, t− τ).

Consequently, f and f tp(t) do not diverge to the left at location l∗ at time t− τ .
With similar estimations for cases (2), (3), and (4), we obtain that f and f tp(t) do
not diverge at any location l with |f(l∗, t − τ) − f tp(t)(l∗, t − τ)| = ‖f(t − τ) −
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f tp(t)(t−τ)‖, and with the smoothness of these functions we obtain that f and f tp(t)
do not diverge to the left in the maximum norm.

The result can then be obtained by a simple triangulation. By assumption we
have ‖f tp(t)(t − ε) − p(t − ε)‖ ≤ ν and ‖f(t) − p(t)‖ ≤ µ. For the latter, we
have shown that it implies ‖f(t− ε)− f tp(t)(t− ε)‖ ≤ µ. The triangle inequality
implies that ‖f(t− ε)− p(t− ε)‖ ≤ µ+ ν.

4.2. Single ε-Nets
4.2.1. The Approximation Function

In single ε-nets, we compute the gradient of the function f at the end of each
interval, and we assume that this gradient remains constant throughout the inter-
val. This yields a linear approximation function p1, which achieves a local error
of ε2.

We now define the function p1. For initialisation, we define p1(l, T ) = 1 if
l ∈ G and p1(l, T ) = 0 otherwise. Then, if p1 is defined for the interval [t, T ],
we will use the following procedure to extend it to the interval [t − ε, T ]. We
first determine the optimising enabled actions for each location for f tp1(t) at time
t. That is, we choose, for all l ∈ L, an action:

atl ∈ arg opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · p1(l′, t). (4)

We then fix ctl =
∑

l′∈LQ(l, atl , l
′) ·p1(l′, t) as the descent of p1(l, ·) in the interval

[t− ε, t]. Therefore, for every τ ∈ [0, ε] and every l ∈ L we have:

−ṗ1(l, t− τ) = ctl and p1(l, t− τ) = p1(l, t) + τ · ctl . (5)

Let us return to our running example. We will apply the approximation p1

to the example shown in Figure 1. We will set ε = 0.1, and focus on the inter-
val [1.1, 1.2] with initial values p1(G, 1.2) = 1, p1(l, 1.2) = 0.244, p1(lR, 1.2) =
0.107, p1(lS, 1.2) = 0.075, p1(⊥, 1.2) = 0. These are close to the true values at
time 1.2. Note that the point t1, which is the time at which the reachability player
switches the action played at lR, is contained in the interval [1.1, 1.2]. Applying
Equation (4) with these values allows us to show that the maximising action at lR
is a, and the minimising action at lS is also a. As a result, we obtain the approxi-
mation p1(lR, t− τ) = 0.0286τ + 0.107 and p1(lS, t− τ) = 0.032τ + 0.075.

We now prove error bounds for p1. Recall that E(1, τ) denotes the difference
between f and p1 after τ time units. We can now formally define this as E(1, ε) :=
‖f tp1(t)(t − ε) − p1(t − ε)‖. We now give a sequence of three lemmas, with the
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goal of proving an upper bound on E(1, τ). We begin by showing bounds on the
range of values that p1 may take.

Lemma 6. If ε ≤ 1, then we have p1(l, t) ∈ [0, 1] for all t ∈ [0, T ].

Proof. We will prove this by induction over the intervals [t− ε, t]. The base case
is trivial since we have by definition that either p1(l, T ) = 0 or p1(l, T ) = 1. Now
suppose that p1(l, t) ∈ [0, 1] for some ε-interval [t − ε, t]. We will prove that
p1(l, t− τ) ∈ [0, 1] for all τ ∈ [0, ε].

Since τ ≤ ε ≤ 1, from Equation (5) we have:

p1(l, t− τ) = p1(l, t) + τ ·
∑
l′∈L

R(l, atl , l
′) · (p1(l′, t)− p1(l, t))

≤ p1(l, t) +
∑
l′∈L

R(l, atl , l
′) · (p1(l′, t)− p1(l, t))

=

(
1−

∑
l′∈L

R(l, atl , l
′)

)
· p1(l, t) +

∑
l′∈L

R(l, atl , l
′) · p1(l′, t).

Since we are considering normed Markov games, we have that∑
l′ 6=LR(l, atl , l

′) ≤ 1, and therefore p1(l, t − τ) is a weighted average
over the values p1(l′, t) where l′ ∈ L. From the inductive hypothesis, we have
that p1(l′, t) ∈ [0, 1] for every l′ ∈ L, and therefore a weighted average over these
values must also lie in [0, 1].

Next, we show bounds on the range of values that −ḟ tp1(t) may take.

Lemma 7. If ε ≤ 1 then we have −ḟ tp1(t)(l, t− τ) ∈ [−1, 1] for every τ ∈ [0, ε].

Proof. Lemma 6 implies that f tp1(t)(l, t) = p1(l, t) ∈ [0, 1] for all l ∈ L. The
following argument is similar of that used in 5: When some value f tp1(t)(l, t −
τ) = 0 and other values f tp1(t)(l, t − τ) ≥ 0, then ḟ tp1(t)(l, t − τ) ≥ 0. Similarly,
when some value f tp1(t)(l, t − τ) = 1 and other values f tp1(t)(l, t − τ) ≤ 1, then
ḟ tp1(t)(l, t− τ) ≤ 0. Thus, the analytical function f tp1(t)(l, t− τ) cannot break out
of the [0, 1] interval for all τ ∈ [0, ε].

We first prove that−ḟ tp1(t)(l, t−τ) ≤ 1. We will prove this for the reachability
player, the proof for the safety player is analogous. By definition we have:

−ḟ tx(l, t− τ) = max
a∈Σ(l)

∑
l′∈L

R(l, a, l′)(f tp1(t)(l
′, t− τ)− f tp1(t)(l, t− τ)).
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Since we have shown that f tp1(t)(l
′, t − τ) ∈ [0, 1] for all l, and we have∑

l′∈LR(l, a, l′) = 1 for every action a in a normed Markov game, we obtain:

max
a∈Σ(l)

∑
l′∈L

R(l, a, l′)(f tp1(t)(l
′, t− τ)− f tp1(t)(l, t− τ))

≤ max
a∈Σ(l)

∑
l′∈L

R(l, a, l′)(1− 0) = 1.

To prove that −ḟ tp1(t)(l, t− τ) ≥ −1 we use a similar argument:

max
a∈Σ(l)

∑
l′∈L

R(l, a, l′)(f tp1(t)(l
′, t− τ)− f tp1(t)(l, t− τ))

≥ max
a∈Σ(l)

∑
l′∈L

R(l, a, l′)(0− 1) = −1.

Therefore we have −ḟ tp1(t)(l, t− τ) ∈ [−1, 1].

Finally, we can use Lemma 7 to provide an upper bound on E(1, ε).

Lemma 8. If ε ≤ 1, then E(1, ε) := ‖f tp1(t)(t− ε)− p1(t− ε)‖ ≤ ε2.

Proof. Lemma 7 implies that−ḟ tp1(t)(l, t−τ) ∈ [−1, 1] for every τ ∈ [0, ε]. Since
the rate of change of f tp1(t) is in the range [−1, 1], we know that f tp1(t) can change
by at most τ in the interval [t− τ, t]. We also know that f tp1(t)(l, t) = p1(l, t), and
therefore we must have the following property:

‖f tp1(t)(t− τ)− p1(t)‖ ≤ τ. (6)

The key step in this proof is to show that ‖ḟ tp1(t)(t − τ) − ṗ1(t − τ)‖ ≤ 2 · τ
for all τ ∈ [0, ε]. Note that by definition we have ṗ1(l, t − τ) = ṗ1(l, t) for all
τ ∈ [0, ε], and so it suffices to prove that ‖ḟ tp1(t)(t− τ)− ṗ1(t)‖ ≤ 2 · τ .

Suppose that l is a location for the reachability player, let atl be the optimal
action at time t, and let at−τl be the optimal action at t−τ . We have the following:

−ṗ1(l, t)− 2 · τ =
∑
l′∈L

R(l, atl , l
′)(p1(l′, t)− p1(l, t))− 2 · τ

≤
∑
l′∈L

R(l, atl , l
′)(f tp1(t)(l

′, t− τ)− f tp1(t)(l, t− τ))

≤
∑
l′∈L

R(l, at−τl , l′)(f tp1(t)(l
′, t− τ)− f tp1(t)(l, t− τ))

= −ḟ tp1(t)(l, t− τ).
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The first equality is the definition of −ṗ1(l, t). The first inequality follows from
Equation (6) and the fact that R(l, a, l′) = 1. The second inequality follows from
the fact that at−τl is an optimal action at time t − τ , and the final equality is the
definition of−ḟ tp1(t)(l, t−τ). Using the same techniques in a different order gives:

−ḟ tp1(t)(l, t− τ) =
∑
l′∈L

R(l, at−τl , l′)(f tp1(t)(l
′, t− τ)− f tp1(t)(l, t− τ))

≤
∑
l′∈L

R(l, at−τl , l′)(p1(l′, t)− p1(l, t)) + 2 · τ

≤
∑
l′∈L

R(l, atl , l
′)(p1(l′, t)− p1(l, t)) + 2 · τ

= −ṗ1(l, t) + 2 · τ.

To prove the claim for a location l belonging to the safety player, we use the
same arguments, but in reverse order. That is, we have:

−ṗ1(l, t)− 2 · τ =
∑
l′∈L

R(l, atl , l
′)(p1(l′, t)− p1(l, t))− 2 · τ

≤
∑
l′∈L

R(l, at−τl , l′)(p1(l′, t)− p1(l, t))− 2 · τ

≤
∑
l′∈L

R(l, at−τl , l′)(f tp1(t)(l
′, t− τ)− f tp1(t)(l, t− τ))

= −ḟ tp1(t)(l, t− τ).

We also have:

−ḟ tp1(t)(l, t− τ) =
∑
l′∈L

R(l, at−τl , l′)(f tp1(t)(l
′, t− τ)− f tp1(t)(l, t− τ))

≤
∑
l′∈L

R(l, atl , l
′)(f tp1(t)(l

′, t− τ)− f tp1(t)(l, t− τ))

≤
∑
l′∈L

R(l, atl , l
′)(p1(l′, t)− p1(l, t)) + 2 · τ

= −ṗ1(l, t) + 2 · τ.

Therefore, we have shown that ‖ḟ tp1(t)(t− τ)− ṗ1(t− τ)‖ ≤ 2 · τ for all τ ∈ [0, ε].
We can complete the proof by observing that

∫ τ
0

2 · τdτ = τ 2. This allows us
to conclude that E(1, ε) := ‖f tp1(t)(t− ε)− p1(t− ε)‖ ≤ ε2.
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4.2.2. Strategies
The approximation p1 can also be used to construct strategies for the two play-

ers with similar error bounds. We will describe the construction for the reachabil-
ity player. The construction for the safety player can be derived analogously.

The strategy for the reachability player is to play the action chosen by p1 dur-
ing the entire interval [t − ε, t]. We will define a system of differential equations
g1(l, τ) that describe the outcome when the reachability fixes this strategy, and
when the safety player plays an optimal counter strategy. For each location l, we
define g1(l, t) = f tp1(t)(l, t), and we define g1(l, τ), for each τ ∈ [t− ε, t], as:

−ġ1(l, τ) =
∑
l′∈L

Q(l, atl , l
′) · g1(l′, τ) if l ∈ Lr, (7)

−ġ1(l, τ) = min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g1(l′, τ) if l ∈ Ls. (8)

We will prove bounds for Es(1, ε), which is the difference between g1 and f tp1(t)

on an interval of length ε. We begin by proving the following auxiliary lemma,
which shows that the difference between p1 and g1 is bounded by ε2.

Lemma 9. We have ‖g1(t− ε)− p1(t− ε)‖ ≤ ε2.

Proof. Suppose that we apply single ε-nets to approximate the solution of the
system of differential equations g1 over the interval [t− ε, t] to obtain an approxi-
mation pg1. To do this, we select for each location l ∈ Ls an action a that satisfies:

a ∈ arg opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g1(l′, t).

Since g1(l, t) = f tp1(t)(l, t) = p1(l, t) for every location l, we have that a = atl ,
where atl is the action chosen by p1 at l. In other words, the approximations p1

and pg1 choose the same actions for every location in Ls. Therefore, for all loca-
tions l ∈ L, we have ctl =

∑
l′∈LQ(l, atl , l

′) ·pg1(l′, t) =
∑

l′∈LQ(l, atl , l
′) ·p1(l′, t),

which implies that for every time τ ∈ [0, ε] we have:

pg1(l, t− τ) = pg1(l, t) + τ · ctl = p1(l, t) + τ · ctl = p1(l, t− τ).

That is, the approximations p1 and pg1 are identical.
Note that the system of differential equations g1 describes a continuous-

time Markov game in which some actions for the reachability player have been
removed. Since g1 describes a CTMG, we can apply Lemma 8 to obtain
‖g1(t − τ) − pg1(t − τ)‖ ≤ ε2. Since p1(t − ε) = pg1(t − ε), we can conclude
that ‖g1(t− τ)− p1(t− τ)‖ ≤ ε2.
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We can now combine Lemma 9 with Lemma 8 to obtain the following bound
on Es(1, ε).

Lemma 10. We have Es(1, ε) := ‖g1(t− ε)− f tp1(t)(t− ε)‖ ≤ 2 · ε2.

4.2.3. The Approximation Algorithm
Lemma 8 gives the ε-step error for p1, and we can apply Lemma 5 to show

that the global error is bounded by ε2 · T
ε

= εT . If π is the required precision, then
we can choose ε = π

T
to produce an algorithm that terminates after T

ε
≈ T 2

π
many

steps. Hence, we obtain the following known result.

Theorem 11. For a normed Markov gameM of size |M|, we can compute a π-
optimal strategy and determine the quality ofM up to precision π in timeO(|M|·
T · T

π
).

Proof. As we have argued, in order to guarantee a precision of π, it suffices to
choose ε = π

T
, which gives T 2

π
many intervals [t − ε, t] for which p1 must be

computed. It is clear that, for each interval, the approximation p1 can be computed
in O(M) time, and therefore, the total running time will be O(|M| · T · T

π
).

4.3. Double ε-Nets
4.3.1. The Approximation Function

In this section we show that only a small amount of additional computation
effort needs to be expended in order to dramatically improve over the precision
obtained by single ε-nets. This will allow us to use much larger values of ε while
still retaining our desired precision.

In single ε-nets, we computed the gradient of f at the start of each interval and
assumed that the gradient remained constant for the duration of that interval. This
gave us the approximation p1. The key idea behind double ε-nets is that we can
use the approximation p1 to approximate the gradient of f throughout the interval.

We define the approximation p2 as follows: we have p2(l, T ) = 1 if l ∈ G and
0 otherwise, and if p2(l, τ) is defined for every l ∈ L and every τ ∈ [t, T ], then
we define p2(l, τ) for every τ ∈ [t− ε, t] as:

−ṗ2(l, τ) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (p1(l′, τ)− p1(l, τ)) ∀l ∈ L. (9)

By comparing Equations (9) and (2), we can see that double ε-nets uses p1 as an
approximation for f during the interval [t − ε, t]. Furthermore, in contrast to p1,
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note that the approximation p2 can change it’s choice of optimal action during the
interval. The ability to change the choice of action during an interval is the key
property that allows us to prove stronger error bounds than previous work.

Lemma 12. If ε ≤ 1 then E(2, ε) := ‖p2(τ)− f tp2(t)(τ)‖ ≤ 2
3
ε3.

Proof. We begin by considering the system of differential equations that define
p2, as given in Equation (9):

−ṗ2(l, τ) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (p1(l′, τ)− p1(l, τ)) ∀l ∈ L.

The error bounds given by Lemma 8 imply that ‖p1(t− τ)− f tp2(t)(t− τ)‖ ≤ τ 2

for every τ ∈ [0, ε]. Therefore, for every pair of locations l, l′ ∈ L and every
τ ∈ [t− ε, t] we have:

|(p1(l′, t− τ)− p1(l, t− τ))− (f tp2(t)(l
′, t− τ)− f tp2(t)(l, t− τ))| ≤ 2 · τ 2.

Since we are dealing with normed Markov games, we have
∑

l′∈LR(l, a, l′) = 1
for every location l ∈ L and every action a ∈ A(l). Therefore, we also have for
every action a:∣∣∣∑

l′∈L

R(l, a, l′) · (p1(l′, t− τ)− p1(l, t− τ))

−
∑
l′∈L

R(l, a, l′) · (f tp2(t)(l
′, t− τ)− f tp2(t)(l, t− τ)

∣∣∣ ≤ 2 · τ 2.

This implies that ‖ṗ2(t− τ)− ḟ tp2(t)(t− τ)‖ ≤ 2 · τ 2.
We can obtain the claimed result by integrating over this difference:

|p2(l, t− τ)− f tp2(t)(l, t− τ)| ≤
∫ τ

0

|ṗ2(l, t− τ)− ḟ tp2(t)(l, t− τ)| ≤ 2

3
τ 3.

Therefore, the total amount of error incurred by p2 in the interval [t − ε, t] is at
most 2

3
ε3.

Let us apply the approximation p2 to the example shown in Figure 1. We
will again use the interval [1.1, 1.2], and we will use initial values that were used
when we applied single ε-nets to the example in Section 4.2. We will focus on the
location lR. From the previous section, we know that p1(lR, t − τ) = 0.0286τ +
0.107, and for the actions a and b we have:
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a

[1.1

b
a

1.2]1.2− z

b

Figure 2: This figure shows how −ṗ2 is computed on the interval [1.1, 1.2] for the location lR.
The function is given by the upper envelope of the two functions: it agrees with the quality of a
on the interval [1.2− z, 1.2] and with the quality of b on the interval [1.1, 1.2− z].

• ∑l′∈LR(lR, a, l
′)p1(l′, t− τ) = 1

20
+ 4

5
p1(lR, t− τ),

• ∑l′∈LR(lR, b, l
′)p1(l′, t− τ) = 1

5
p1(l, t− τ) + 4

5
p1(lR, t− τ).

These functions are shown in Figure 2. To obtain the approximation p2, we must
take the maximum of these two functions. Since p1 is a linear function, we know
that these two functions have exactly one crossing point, and it can be determined
that this point occurs when p1(l, t − τ) = 0.25, which happens at τ = z := 5

63
.

Since z ≤ 0.1 = ε, we know that the lines intersect within the interval [1.1, 1.2].
Consequently, we get the following piecewise quadratic function for p2:

• When 0 ≤ τ ≤ z, we use the action a and obtain −ṗ2(lR, t − τ) =
−0.00572τ + 0.0286, which implies that p2(lR, t − τ) = −0.00286τ 2 +
0.0286τ + 0.107.

• When z < τ ≤ 0.1 we use action b and obtain −ṗ2(lR, t − τ) =
0.0094τ +0.0274, which implies that p2(lR, t− τ) = 0.0047τ 2 +0.0274τ +
0.107047619.

4.3.2. Strategies
As with single ε-nets, we can provide a strategy that obtains similar error

bounds. Once again, we will consider only the reachability player, because the
proof can easily be generalised for the safety player. In much the same way as we
did for g1, we will define a system of differential equations g2(l, τ) that describe
the outcome when the reachability player plays according to p2, and the safety
player plays an optimal counter strategy. For each location l, we define g2(l, t) =
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f tp2(t)(l, t). If aτl denotes the action that maximises Equation (9) at the time point
τ ∈ [t− ε, t], then we define g2(l, τ), as:

−ġ2(l, τ) =
∑
l′∈L

Q(l, aτl , l
′) · g2(l′, τ) if l ∈ Lr, (10)

−ġ2(l, τ) = min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g2(l′, τ) if l ∈ Ls. (11)

The following lemma proves that difference between g2 and f tp2(t) has similar
bounds to those shown in Lemma 12. The rest of this subsection is dedicated
to proving this lemma.

Lemma 13. If ε ≤ 1 then we have Es(2, ε) := ‖g2(t− ε)− f tp2(t)(t− ε)‖ ≤ 2 · ε3.

To begin, we prove an auxiliary lemma, that will be used throughout the rest
of the proof.

Lemma 14. Let f and g be two functions such that ‖f(t− τ)−g(t− τ)‖ ≤ c · τ k.
If af is an action that maximises (resp. minimises)

opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · f(l′, t− τ), (12)

and ag is is an action that maximises (resp. minimises)

opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g(l′, t− τ), (13)

then we have:∣∣∣∑
l′∈L

R(l, ag, l′) · g(l′, t− τ)−
∑
l′∈L

R(l, af , l′) · f(l′, t− τ)
∣∣∣ ≤ 3 · c · τ k.

Proof. We will provide a proof for the case where the equations are maximising,
the proof for the minimisation case is identical. We begin by noting that the prop-
erty ‖f(t − τ) − g(t − τ)‖ ≤ c · τ k, and the fact that we consider only normed
Markov games imply that, for every action a we have:∣∣∣∑

l′∈L

Q(l, a, l′) · f(l′, t− τ)−
∑
l′∈L

Q(l, a, l′) · g(l′, t− τ)
∣∣∣ ≤ 2 · c · τ k. (14)
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We use this to claim that the following inequality holds:∣∣∣∑
l′∈L

Q(l, ag, l′) · g(l′, t− τ)−
∑
l′∈L

Q(l, af , l′) · f(l′, t− τ)
∣∣∣ ≤ 2 · c · τ k. (15)

To see why, suppose that∑
l′∈L

Q(l, ag, l′) · g(l′, t− τ) >
∑
l′∈L

Q(l, af , l′) · f(l′, t− τ) + 2 · c · τ k.

Then we could invoke Equation (14) to argue that
∑

l′∈LQ(l, ag, l′) · f(l′, t −
τ) >

∑
l′∈LQ(l, af , l′) · f(l′, t − τ), which contradicts the fact that af achieves

the maximum in Equation (12). Similarly, if
∑

l′∈LQ(l, af , l′) · f(l′, t − τ) >∑
l′∈LQ(l, ag, l′) ·g(l′, t−τ)+2 ·c ·τ k, then we can invoke Equation (14) to argue

that ag does not achieve the maximum in Equation (13). Therefore, Equation (15)
must hold.

Now, to finish the proof, we apply the fact that ‖f(t− τ)− g(t− τ)‖ ≤ c · τ k
to Equation (15) to obtain:∣∣∣∑

l′∈L

R(l, ag, l′)g(l′, t− τ)−
∑
l′∈L

R(l, af , l′)f(l′, t− τ)
∣∣∣ ≤ 3 · c · τ k.

This completes the proof.

To prove Lemma 13 we will consider the following class of strategies: play
the action chosen by p2 for the first k transitions, and then play the action chosen
by p1 for the remainder of the interval. We will denote the reachability probability
obtained by this strategy as gk2 , and we will denote the error of this strategy as
Eks (2, ε) := ‖gk2(t− ε)− f tp2(t)(t− ε)‖. Clearly, as k approaches infinity, we have
that gk2 approaches g2, and Eks (2, ε) approaches Es(2, ε). Therefore, in order to
prove Lemma 13, we will show that Eks (2, ε) ≤ 2 · ε3 for all k.

We will prove error bounds on gk2 by induction. The following lemma consid-
ers the base case, where k = 1. In other words, it considers the strategy that plays
the action chosen by p2 for the first transition, and then plays the action chosen
by p1 for the rest of the interval.

Lemma 15. If ε ≤ 1, then we have E1
s (2, ε) ≤ 2 · ε3.

Proof. Suppose that the first discrete transition occurs at time t − τ , where
τ ∈ [0, ε]. Let l be a location belonging to the reachability player, and let
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at−τl be the action that maximises p2 at time t − τ . By definition, we know
that the probability of moving to a location l′ is given by R(l, at−τl , l′), and
we know that the time-bounded reachability probabilities for each state l′ are
given by g1(l′, t − τ). Therefore, the outcome of choosing at−τl at time t − τ
is
∑

l′∈LR(l, at−τl , l′)g1(l′, t− τ). If a∗ is an action that would be chosen by f tp2(t)

at time t− τ , then we have the following bounds:∣∣∣∑
l′∈L

R(l, at−τl , l′)g1(l′, t− τ)−
∑
l′∈L

R(l, a∗, l′)f tp2(t)(l
′, t− τ)

∣∣∣
≤
∣∣∣∑
l′∈L

R(l, at−τl , l′)p1(l′, t− τ)−
∑
l′∈L

R(l, a∗, l′)f tp2(t)(l
′, t− τ)

∣∣∣+ τ 2

≤ 4 · τ 2.

The first inequality follows from Lemma 9, and the second inequality follows
from Lemma 14.

Now suppose that l is a location belonging to the safety player. Since the
reachability player will follow p1 during the interval [t − τ, t], we know that the
safety player will choose an action ag that minimises:

min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g1(l′, t− τ).

If a∗ is the action chosen by f at time t−τ , then Lemma 10 and Lemma 14 imply:∣∣∣∑
l′∈L

R(l, ag, l′)g1(l′, t− τ)−
∑
l′∈L

R(l, a∗, l′)f tp2(t)(l
′, t− τ)

∣∣∣ ≤ 6 · τ 2.

So far we have proved that the total amount of error made by g1
2 when the first

transition occurs at time t− τ is at most 6 · τ 2. To obtain error bounds for g1
2 over

the entire interval [t − ε, t], we consider the probability that the first transition
actually occurs at time t− τ :

E1
s (2, ε) ≤

∫ ε

0

eτ−ε6τ 2dτ ≤
∫ ε

0

6τ 2dτ = 2 · ε3.

This completes the proof.

We now prove the inductive step, by considering gk2 . This is the strategy that
follows the action chosen by p2 for the first k transitions, and then follows p1 for
the rest of the interval.
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Lemma 16. If Eks (2, ε) ≤ 2 · ε3 for some k, then Ek+1
s (2, ε) ≤ 2 · ε3.

Proof. The structure of this proof is similar to the proof of Lemma 15, however,
we must account for the fact that gk+1

2 follows gk2 after the first transition rather
than g1.

Suppose that we play the strategy for gk+1
2 , and that the first discrete transition

occurs at time t − τ , where τ ∈ [0, ε]. Let l be a location belonging to the reach-
ability player, and let at−τl be the action that maximises p2 at time t − τ . If a∗ is
an action that would be chosen by f tp2(t) at time t− τ , then we have the following
bounds:∣∣∣∑

l′∈L

R(l, at−τl , l′)gk2(l′, t− τ)−
∑
l′∈L

R(l, a∗, l′)f tp2(t)(l
′, t− τ)

∣∣∣
≤
∣∣∣∑
l′∈L

R(l, at−τl , l′)p1(l′, t− τ)−
∑
l′∈L

R(l, a∗, l′)f tp2(t)(l
′, t− τ)

∣∣∣+ τ 2 + 2 · τ 3

≤ 4 · τ 2 + 2 · τ 3 ≤ 6 · τ 2.

The first inequality follows from the inductive hypothesis, which gives bounds on
how far gk2 is from f tp2(t), and from Lemma 8, which gives bounds on how far f tp2(t)

is from p1. The second inequality follows from Lemma 8 and Lemma 14, and the
final inequality follows from the fact that τ ≤ 1.

Now suppose that the location l belongs to the safety player. Let ag be an
action that minimises:

min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · gk2(l′, t− τ).

If a∗ is the action chosen by f at time t−τ , then Lemma 10 and Lemma 14 imply:∣∣∣∑
l′∈L

R(l, ag, l′)gk2(l′, t− τ)−
∑
l′∈L

R(l, a∗, l′)f tp2(t)(l
′, t− τ)

∣∣∣ ≤ 6 · τ 3 ≤ 6 · τ 2.

The first inequality follows from the inductive hypothesis and Lemma 14, and the
second inequality follows from the fact that τ ≤ 1.

To obtain error bounds for gk+1
2 over the entire interval [t − ε, t], we consider

the probability that the first transition actually occurs at time t− τ :

Ek+1
s (2, ε) ≤

∫ ε

0

eτ−ε6 · τ 2 dτ ≤
∫ ε

0

6τ 2 dτ = 2 · ε3.

This completes the proof.
Sven::short
explanation
added
as
requested
by a
reviewer.

Having shown Lemmas 15 and 16, Lemma 13 follows with the observation
that Es(2, ε) = limk→∞ Eks (2, ε).
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4.3.3. The Approximation Algorithm
Computing the approximation p2 for an interval [t−ε, t] is not expensive. The

fact that p1 is linear implies that each action can be used for at most one subinterval
of [t−ε, t]. Therefore, there are less than |Σ| points at which the strategy changes,
which implies that p2 is a piecewise quadratic function with at most |Σ| pieces.
We now present an algorithm that uses sorting to compute these pieces.

Lemma 17. Computing p2 for an interval [t−ε, t] takesO(|M|+|L|·|Σ|·log |Σ|)
time.

Proof. We give an algorithm for the reachability player. The algorithm for the
safety player is symmetric. For every location l ∈ L, and time point τ ∈ [0, ε], we
define the quality of an action a as:

qτl (a) :=
∑
l′∈L

Q(l, a, l′)pt1(l′, t− τ).

We also define an operator that compares the quality of two actions. For two
actions a1 and a2, we have a1 �τl a2 if and only if qτl (a1) ≤ qτl (a2), and we have
a1 ≺τl a2 if and only if qτl (a1) < qτl (a2).

Algorithm 1 shows the key component of our algorithm for computing the
approximation p2 during the interval [t − ε, t]. The algorithms outputs a list O
containing pairs (a, τ), where a is an action and τ is a point in time, which repre-
sents the optimal actions during the interval [t− ε, t]: if the algorithm outputs the
list O = 〈(a1, τ1), (a2, τ2), . . . , (an, τn)〉, then a1 maximises Equation (9) for the
interval [t− τ2, t− τ1], a2 maximises Equation (9) for the interval t− τ3, t− τ2],
and so on.

The algorithm computes O as follows. It begins by sorting the actions accord-
ing to their quality at time t. Since a1 maximises the quality at time t, we know
that a1 is chosen by Equation (9) at time t. Therefore, the algorithm initialises O
by assuming that a1 maximises Equation (9) for the entire interval [t − ε, t]. The
algorithm then proceeds by iterating through the actions 〈a2, a3, . . . am〉.

We will prove the following invariant on the outer loop of the algorithm: if the
first i actions have been processed, then the list O gives the solution to:

−ṗ2(l, τ, i) = max
a∈〈a1,a2,...,ai〉

∑
l′∈L

R(l, a, l′) · (p1(l′, τ)− p1(l, τ)) . (16)

In other words, the list O would be a solution to Equation (9) if the actions
〈ai+1, ai+2, . . . am〉 did not exist. Clearly, when i = m the list O will actually
be a solution to Equation (9).
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Algorithm 1 BestActions
Sort the actions into a list 〈a1, a2, . . . , am〉 such that ai �0

l ai+1 for all i.
O := 〈(a1, 0)〉.
for i := 2 to m do

(a, τ) := the last element in O.
if a ≺εl ai then

while true do
x := the point at which qxl (a) = qxl (ai).
if x ≥ τ then

Add (ai, x) to the end of O.
break

else
Remove (a, τ) from O.
(a, τ) := the last element in O.

end if
end while

end if
end for
return O.
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We will prove this invariant by induction. The base case is trivially true, be-
cause when i = 1 the maximum in Equation (16) considers only a1, and there-
fore a1 is optimal throughout the interval [t − ε, t]. We now prove the inductive
step. Assume that O is a solution to Equation (16) for i − 1. We must show that
Algorithm 1 correctly computes O for i. Let us consider the operations that Algo-
rithm 1 performs on the action ai. It compares ai with the pair (a, τ), which is the
final pair in O, and one of three actions is performed:

• If ai ≺εl a, then the algorithm ignores ai. This is because we have ai ≺0
l a1,

which means that ai is worse than a1 at time t, and we have ai ≺εl a, which
implies that ai is worse than a at time t−ε. Since qτl (ai) is a linear function,
we can conclude that ai never maximises Equation (9) during the interval
[t− ε, t].
• If x, which is the point at which the functions qxl (a) and qxl (ai) intersect, is

greater than τ , then we add (ai, x) to O. This is because the fact that qxl (ai)
and qxl (a) are linear functions implies that ai cannot be optimal for every
time τ ′ < τ .

• Finally, if x is smaller than τ , then we remove (a, τ) from O and continue
by comparing ai to the new final pair in O. From the inductive hypothesis,
we have that a is not optimal for every time point τ ′ ≤ τ , and the fact that
x < τ and the fact that qxl (ai) and qxl (a) are linear functions implies that
ai is better than a for every time point τ ′ > τ . Therefore, a can never be
optimal.

These three observations are sufficient to prove that Algorithm 1 correctly com-
putes O, and O can obviously be used to compute the approximation p2.

We claim that Algorithm 1 runs in time O(|Σ| log |Σ|). Since sorting
can be done in O(|Σ| log |Σ|) time, the first step of this algorithm also takes
O(|Σ| log |Σ|). We claim that the remaining steps of the algorithm take O(|Σ|)
time. To see this, note that after computing a crossing point x, the algorithm ei-
ther adds an action to the list O, or removes an action from O. Moreover each
action a can enter the list O at most once, and leave the list O at most once.
Therefore at most 2 · |Σ| crossing points are computed in total.

We can now complete the proof of this lemma. In order to compute the ap-
proximation p2, we simply run Algorithm 1 for each location l ∈ L, which takes
O(|L| · |Σ| log |Σ|) time. Finally, we must account for the time taken to com-
pute the approximation p1, which takes O(|M|) time, as argued in Theorem 11.
Therefore, we can compute p2 in time O(|M|+ |L| · |Σ| log |Σ|).
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Since the ε-step error for double ε-nets is bounded by ε3, we can apply
Lemma 5 to conclude that the global error is bounded by ε3 · T

ε
= ε2T . Therefore,

if we want to compute f with a precision of π, we should choose ε ≈√ π
T

, which
gives T

ε
≈ T 1.5
√
π

distinct intervals.

Theorem 18. For a normed Markov game M we can approximate the time-
bounded reachability, construct π optimal memoryless strategies for both play-
ers, and determine the quality of these strategies with precision π in time

O(|M| · T ·
√

T
π

+ |L| · T ·
√

T
π
· |Σ| log |Σ|).

Proof. Lemma 12 gives the step error for double ε-nets to be 2
3
ε3. Since there are

T
ε

intervals, Lemma 5 implies that the global error of double ε-nets is 2
3
ε3 · T

ε
=

2
3
ε2 · T . In order to achieve a precision of π, we must select an ε that satisfies

2
3
ε2 · T = π. Therefore, we choose ε =

√
3π
2T

, which gives T ·
√

2T
3π

intervals.
The cost of computing each interval is given by Lemma 17 as O(|M| + |L| ·

|Σ| · log |Σ|), and there are T ·
√

T
3π

intervals overall, which gives the claimed

complexity of O(|M| · T ·
√

T
π

+ |L| · T ·
√

T
π
· |Σ| log |Σ|).

4.4. Triple ε-Nets and Beyond
4.4.1. The Approximation Function

The techniques used to construct the approximation p2 from the approxima-
tion p1 can be generalised. This is because the only property of p1 that is used in
the proof of Lemma 12 is the fact that it is a piecewise polynomial function that
approximates f . Therefore, we can inductively define a sequence of approxima-
tions pk as follows:

−ṗk(l, τ) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (pk−1(l′, τ)− pk−1(l, τ)) . (17)

We can repeat the arguments from the previous sections to obtain our error bounds.
The following lemma is a generalisation of Lemma 12.

Lemma 19. For every k > 1, if we have E(k, ε) ≤ c · εk+1, then we have E(k +
1, ε) ≤ 2

k+2
· c · εk+2.

Proof. The inductive hypothesis implies that ‖pk(t−τ)−f tpk+1(t)(t−τ)‖ ≤ c·τ k+1

for every τ ∈ [0, ε]. Therefore, for every pair of locations l, l′ ∈ L and every
τ ∈ [t− ε, t] we have:

|(pk(l′, t− τ)−pk(l, t− τ))− (f tpk+1(t)(l
′, t− τ)−f tpk+1(t)(l, t− τ))| ≤ 2 · c · τ k+1.
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Since we are dealing with normed Markov games, we have
∑

l′∈LR(l, a, l′) = 1
for every location l ∈ L and every action a ∈ A(l). Therefore, we also have for
every action a:∣∣∣∑

l′∈L

R(l, a, l′) · (pk(l′, t− τ)− pk(l, t− τ))

−
∑
l′∈L

R(l, a, l′) · (f tpk+1(t)(l
′, t− τ)− f tpk+1(t)(l, t− τ))

∣∣∣ ≤ 2 · c · τ k+1.

This implies that ‖ṗk(t− τ)− ḟ tpk+1(t)(t− τ)‖ ≤ 2 · cτ k+1.
We can obtain the claimed result by integrating over this difference:

E(k + 1, τ) =

∫ τ

0

‖ṗk(t− τ)− ḟ tpk+1(t)(t− τ)‖ ≤ 2

k + 2
· c · τ k+2.

Therefore, the total amount of error incurred by pk+1 in [t − ε, t] is at most 2
k+2
·

c · εk+2.

4.4.2. Strategies
As before, we can construct strategies for both of the players. We will give

the prove only for the reachability player, because the proof for the safety player
is entirely symmetric. We begin by defining the approximation gk, which gives
the time-bounded reachability probability when the reachability player follows
the actions chosen by pk. If aτl is the action that maximises Equation (17) at the
location l for the time point τ ∈ [t− ε, t] then we define gk(l, τ) as:

−ġk(l, τ) =
∑
l′∈L

Q(l, aτl , l
′) · gk(l′, τ) if l ∈ Lr, (18)

−ġk(l, τ) = min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · gk(l′, τ) if l ∈ Ls. (19)

Our approach to proving error bounds for gk follows the approach that we used
in the proof of Lemma 13. We will consider the following class of strategies: play
the action chosen by pk for the first i transitions, and then play the action chosen
by p1 for the remainder of the interval. We will denote the reachability probability
obtained by this strategy as gik, and we will denote the error of this strategy as
E is(k, ε) := ‖gik(t− ε)− f tp2(t)(t− ε)‖. Clearly, as i approaches infinity, we have
that gik approaches gk, and E is(k, ε) approaches Es(k, ε). Therefore, if a bound can
be established on E is(k, ε) for all i, then that bound also holds for Es(k, ε).
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We have by assumption that E(k, ε) ≤ c · εk+1 and Es(k, ε) ≤ d · εk+1, and our
goal is to prove that Es(k+1, ε) ≤ 8c+3d

k+2
·εk+2. We will prove error bounds on gik+1

by induction. The following lemma considers the base case, where i = 1. In other
words, it considers the strategy that plays the action chosen by pk+1 for the first
transition, and then plays the action chosen by pk for the rest of the interval.

Lemma 20. If ε ≤ 1, E(k, ε) ≤ c · εk+1, and Es(k, ε) ≤ d · εk+1, then we have
E1
s (k + 1, ε) ≤ 4c+3d

k+2
· εk+2.

Proof. Suppose that the first discrete transition occurs at time t − τ , where
τ ∈ [0, ε]. Let l be a location belonging to the reachability player, and let
at−τl be the action that maximises pk+1 at time t − τ . By definition, we know
that the probability of moving to a location l′ is given by R(l, at−τl , l′), and
we know that the time-bounded reachability probabilities for each state l′ are
given by gk(l

′, t − τ). Therefore, the outcome of choosing at−τl at time t − τ
is
∑

l′∈LR(l, at−τl , l′)gk(l
′, t − τ). If a∗ is an action that would be chosen by

f tpk+1(t) at time t− τ , then we have the following bounds:∣∣∣∑
l′∈L

R(l, at−τl , l′)gk(l
′, t− τ)−

∑
l′∈L

R(l, a∗, l′)f tpk+1(t)(l
′, t− τ)

∣∣∣
≤
∣∣∣∑
l′∈L

R(l, at−τl , l′)pk(l
′, t− τ)−

∑
l′∈L

R(l, a∗, l′)f tpk+1(t)(l
′, t− τ)

∣∣∣
+ c · τ k+1 + d · τ k+1

≤ 4 · c · τ k+1 + d · τ k+1.

The first inequality follows from the bounds given for E(k, ε) and Es(k, ε). The
second inequality follows from the bounds given for E(k, ε) and Lemma 14.

Now suppose that l is a location belonging to the safety player. Since the
reachability player will follow pk during the interval [t − τ, t], we know that the
safety player will choose an action ag that minimises:

min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · gk(l′, t− τ).

If a∗ is the action chosen by f at time t − τ , then the following inequality is a
consequence of Lemma 14:∣∣∣∑

l′∈L

R(l, ag, l′)gk(l
′, t− τ)−

∑
l′∈L

R(l, a∗, l′)f tpk+1(t)(l
′, t− τ)

∣∣∣ ≤ 3 · d · τ k+1.
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So far we have proved that the total amount of error made by g1
k when the first

transition occurs at time t− τ is at most (4c+ 3d) · τ k+1. To obtain error bounds
for g1

k+1 over the entire interval [t− ε, t], we consider the probability that the first
transition actually occurs at time t− τ :

E1
s (k+1, ε) ≤

∫ ε

0

eτ−ε(4c+3d)·τ k+1 dτ ≤
∫ ε

0

(4c+3d)·τ k+1dτ =
4c+ 3d

k + 2
εk+2.

This completes the proof.

Lemma 21. If E is(k + 1, ε) ≤ 8c+3d
k+2
· εk+2 for some k and E(k, ε) ≤ c · εk+1, then

E i+1
s (k + 1, ε) ≤ 8c+3d

k+2
· εk+2.

Proof. The structure of this proof is similar to the proof of Lemma 20, however,
we must account for the fact that gi+1

k+1 follows gik+1 after the first transition rather
than gk.

Suppose that we play the strategy for gi+1
k+1, and that the first discrete transition

occurs at time t − τ , where τ ∈ [0, ε]. Let l be a location belonging to the reach-
ability player, and let at−τl be the action that maximises pk at time t − τ . If a∗ is
an action that would be chosen by f tp2(t) at time t− τ , then we have the following
bounds:∣∣∣∑

l′∈L

R(l, at−τl , l′)gik+1(l′, t− τ)−
∑
l′∈L

R(l, a∗, l′)f tpk+1(t)(l
′, t− τ)

∣∣∣
≤
∣∣∣∑
l′∈L

R(l, at−τl , l′)pk(l
′, t− τ)−

∑
l′∈L

R(l, a∗, l′)f tpk+1(t)(l
′, t− τ)

∣∣∣
+ c · τ k+1 + (4c+ 3d) · τ k+2

≤ 4c · τ k+1 +
8c+ 3d

k + 1
· τ k+2

≤ (8c+ 3d) · τ k+1.

The first inequality follows from the inductive hypothesis, which gives bounds on
how far gik+1 is from f tpk+1(t), and from the assumption about E(k, ε). The second
inequality follows from our assumption on E(k, ε) and Lemma 14, and the final
inequality follows from the fact that τ ≤ 1 and k > 2.

Now suppose that the location l belongs to the safety player. Let ag be an
action that minimises:

min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · gik+1(l′, t− τ).

32



If a∗ is the action chosen by f at time t−τ , then our assumption about E is(k+1, ε)
and Lemma 14 imply:∣∣∣∑

l′∈L

R(l, ag, l′)gi+1
k+1(l′, t− τ)−

∑
l′∈L

R(l, a∗, l′)f tpk+1(t)(l
′, t− τ)

∣∣∣
≤ 24c+ 9d

k + 2
· τ k+2

≤ (8c+ 3d) · τ k+1.

The first inequality follows from the inductive hypothesis and Lemma 14, and the
second inequality follows from the fact that τ ≤ 1 and k > 2.

To obtain error bounds for gk+1
2 over the entire interval [t − ε, t], we consider

the probability that the first transition actually occurs at time t− τ :

E i+1
s (k + 1, ε) ≤

∫ ε

0

eτ−ε(8c+ 3d) · τ k+1 dτ

≤
∫ ε

0

(8c+ 3d) · τ k+1 dτ =
8c+ 3d

k + 2
· εk+2.

This completes the proof.

Our two lemmas together imply that E is(k + 1, ε) ≤ 8c+3d
k+2
· εk+2 for all i, and

hence we can conclude that Es(k+1, ε) ≤ 8c+3d
k+2
·εk+2. This gives us the following

Lemma.

Lemma 22. For every k > 2, if we have that Es(k, ε) ≤ d · εk+1, then we have
that Es(k + 1, ε) ≤ 8c+3d

k+2
· εk+2.

4.4.3. The Approximation Algorithm
Computing the accuracies of Lemmas 19 and 22 explicitly for the first four

levels of ε-nets gives:

k 1 2 3 4 . . .

E(k, ε) ε2 2
3
ε3 1

3
ε4 2

15
ε5 . . .

Es(k, ε) 2ε2 2ε3 17
6
ε4 67

30
ε5 . . .

We can also compute, for a given precision π, the value of ε that should be
used in order to achieve an accuracy of π with ε-nets of level k.
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Lemma 23. To obtain a precision π with an ε-net of level k, we choose ε ≈ k
√

π
T

,

resulting in T
ε
≈ T k

√
T
π

steps.

Proof. Lemma 22 implies that the step error of using a k-net is E(k, ε) ≤ c · εk+1

for some small constant c < 1. Since we have T
ε

many intervals, Lemma 5 implies
that the global error is T ·εk. Therefore, to obtain a precision of π we must choose
ε = k

√
π
T

.

Unfortunately, the cost of computing ε-nets of level k becomes increasingly
prohibitive as k increases. To see why, we first give a property of the functions pk.
Recall that p2 is a piecewise quadratic function. It is not too difficult to see how
this generalises to the approximations pk.

Lemma 24. The approximation pk is piecewise polynomial with degree less than
or equal to k.

Proof. We will prove this claim by induction. For the base case, we have by
definition that p1 is a linear function over the interval [t − ε, t]. For the inductive
step, assume that we have proved that pk−1 is piecewise polynomial with degree
at most k − 1. From this, we have that

∑
l′∈LQ(l, a, l′) · pk−1 is a piecewise

polynomial function with degree at most k − 1 for every action a, and therefore
opta∈Σ(l)

∑
l′∈LQ(l, a, l′)pk−1(l′, ·) is also a piecewise polynomial function with

degree at most k − 1. Since ṗk is a piecewise polynomial function of degree at
most k − 1, we have that pk is a piecewise polynomial of degree at most k.

Although these functions are well-behaved in the sense that they are always
piecewise polynomial, the number of pieces can grow exponentially in the worst
case. The following lemma describes this bound.

Lemma 25. If pk−1 has c pieces in the interval [t − ε, t], then pk has at most
1
2
· c · k · |L| · |Σ|2 pieces in the interval [t− ε, t].

Proof. Let [t− τ1, t− τ2] be the boundaries of a piece in pk−1. Since there can be
at most |Σ(l)| actions at l, we have that optimum computed by Equation (17) must
choose from at most |Σ(l)| distinct polynomials of degree k − 1. Since each pair
of polynomials can intersect at most k times, we have that pk can have at most
k · 1

2
|Σ(l)|2 pieces for each location l in the interval [t − τ1, t − τ2]. Since pk−1

has c pieces in the interval [t− ε, t], and |L| locations, we have that pk can have at
most 1

2
· c · k · |L| · |Σ|2 during this interval.
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The upper bound given above is quite coarse, and we would be surprised if it
were found to be tight. Moreover, we do not believe that the number of pieces
will grow anywhere close to this bound in practice. This is because it is rare, in
our experience, for optimal strategies to change their decision many times within
a small time interval.

However, there is a more significant issue that makes ε-nets become impracti-
cal as k increases. In order to compute the approximation pk, we must be able to
compute the roots of polynomials with degree k − 1. Since we can only directly
compute the roots of polynomials up to a degree of 4 and for higher degrees we
have to approximate the roots, it is unclear whether approximations beyond p4

or p5 are useful.
Once again it is possible to provide a smart algorithm that uses sorting in

order to find the switching points, which gives the following bounds on the cost
of computing the functions p3 and p4.

Theorem 26. For a normed Markov gameM we can construct π optimal memo-
ryless strategies for both players and determine the quality of these strategies with

precision π in time O(|L|2 · 3

√
T
π
·T · |Σ|4 log |Σ|) when using triple ε-nets, and in

time O(|L|3 · 4

√
T
π
· T · |Σ|6 log |Σ|) when using quadruple ε-nets.

Proof. We know that double ε-nets can produce at most |Σ| pieces per interval,
and therefore Lemma 25 implies that triple ε-nets can produce at most 3

2
· |L| · |Σ|3

pieces per interval, and there are T · 3

√
T
π

many intervals. To compute each piece,
we must sort O(|Σ|) crossing points, which takes time O(|Σ| log |Σ|). Therefore,

the total amount of time required to compute p3 is O(T · 3

√
T
π
· |L| · |Σ|4 · log |Σ|).

For quadruple ε-nets, Lemma 25 implies that there will be at most 6 · |L|2 · |Σ|5
pieces per interval, and at most T · 3

√
T
π

many intervals. Therefore, we can repeat

our argument for triple ε-nets to obtain an algorithm that runs in time O(T · 4

√
T
π
·

|L|2 · |Σ|6 · log |Σ|)

From these estimations, it is not clear if triple and quadruple ε-nets are mainly
of theoretical interest, or if they will be useful in practice. While their depency on
ε is clearly reduced, the worst case complexity bounds measured in the sizes of
Σ and L provided by Theorem 26 are high. They do, however, arise purely from
the upper bound on the number of switching points given in Lemma 25. Thus, if
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Figure 3: A CTMDP offering the choice between a long chain of fast transition and a slower path
that looses some probability mass in l5.

the number of switching points that occur is small, these techniques become very
attractive.

It is our belief that the number of switching points will be small in practice,
and our experiments from the following section give evidence to support this as-
sumption.

5. Experimental Results

In order to test the practicability of our algorithms, we have implemented both
double and triple ε-nets. We have evaluated these algorithms on some examples.

Firstly, we have tested our algorithms on the Erlang-example (see Figure 3)
presented in [11] and [16]. We have chosen to consider the same parameters used
in those papers: we study the maximal probability to reach location l4 from l1
within 7 time units. Since this example is a CTMDP, we were able to compare our
results with the Markov Reward Model Checker (MRMC) [11] implementation,
which includes an implementation of the techniques proposed by Buchholz and
Schulz. The results of our experiments are shown in Table 2. The MRMC imple-
mentation was unable to provide results for precisions beyond 1.86 · 10−9. For the
Erlang examples we found that, as the desired precision increases, our algorithms
draw further ahead of the current techniques. The most interesting outcome of
these experiments is the validation of triple ε-nets for practical use. While the
worst case theoretical bounds arising from Lemma 25 indicated that the cost of
computing the approximation for each interval may become prohibitive, these re-
sults show that the worst case does not seem to play a role in practice. In fact, we
found that the number of switching points summed over all intervals and locations
never exceeded 2 in this example.

Second, we test our algorithms on continuous-time Markov games. We use the
model depicted in Figure 4, consisting of two chains of locations l1, l2, . . . , l100
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Erlang model Game model
precision MRMC [11] Double-nets Triple-nets Double-nets Triple-nets
10−4 0.05 s 0.04 s 0.01 s 0.29 s 0.06 s
10−5 0.20 s 0.10 s 0.02 s 0.93 s 0.13 s
10−6 1.32 s 0.32 s 0.03 s 2.94 s 0.28 s
10−7 8 s 0.98 s 0.06 s 9.35 s 0.60 s
10−8 475 s 3.11 s 0.12 s 29.21 s 1.29 s
10−9 — 9.91 s 0.27 s 94 s 2.78 s
10−10 — 31.24 s 0.58 s 299 s 6.05 s

Table 2: Running times of two experiments with our prototype implementation for different pre-
cisions. The running times of MRMC are shown for comparison.

. . .

. . .

G

⊥

l1 l2 l99 l100

l ′1 l ′2 l ′99 l ′100

1 1 1 1 1

5 5 5 5

a,3

a,2

3 3 3 33 3 3 3

Figure 4: A CTMG with many switching points.

and l′1, l
′
2, . . . , l

′
100 that are controlled by the maximising player and the minimis-

ing player, respectively. This example is designed to produce a large number of
switching points. In every location li of the maximising player, there is the choice
between the short but slow route along the chain of maximising locations, and the
slightly longer route which uses the minimising player’s locations. If very little
time remains, the maximising player prefers to take the slower actions, as fewer
transitions are required to reach the goal using these actions. The maximiser also
prefers these actions when a large amount of time remains. However, between
these two extremes, there is a time interval in which it is advantageous for the
maximising player to take the action with rate 3. A similar situation occurs for the
minimising player, and this leads to a large number of points where the players
change their strategy.

Our results (see Tables 2 and 3) on Markov games demonstrate that our al-
gorithms are capable of solving games of non-trivial size in practice. For the
workstation cluster (see Table 3), we once again find that triple ε-nets provide
a substantial performance increase over double ε-nets, and that the worst case
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precision 10−4 10−5 10−6 10−7 10−8 10−9 10−10

Single-nets 73.91 704.69 – – – – –
Double-nets 0.22 0.84 1.93 5.72 18.74 56.13 167.28
Triple-nets 0.14 0.19 0.35 0.71 1.53 3.06 6.06

Double-nets 45.85 152.19 472.59 1740.15 – – –
Triple-nets 7.23 15.12 32.53 69.34 150.30 325.90 688.45

Table 3: Running times for the working cluster example where the first part we have t = 1 and the
second part we have t = 100. Time is given in seconds, and – denotes timeout of an hour.

bounds given by Lemma 25 do not seem to occur. Double ε-nets found 297 points
where the strategy changed during an interval, and triple ε-nets found 684 such
points. Hence, the |L||Σ|2 factor given in Lemma 25 does not seem to arise here.

Finally, we also consider the case study of a fault-tolerant workstation clus-
ter [34]. The workstation cluster has two sub-clusters, which are connected via a
backbone. Each cluster has a central switch, which connects to the backbone, and
also N workstations in a star-topology. Components in the system may fail with
given rates. There is a single repair unit for the cluster, which can repair failing
components. Moreover, it is only capable of repairing one failed component at
a time, with the repair rate provided, which depends on the component. In case
multiple components are down, the repair unit is allocated to repair one broken
unit. The model is thus a CTMDP, where the nondeterminism stems from the
allocation of the repair unit. Details can be found in [35].

We say that the system provides premium service whenever at least N work-
stations in the entire system are operational, and moreover, these workstations
should be connected. We consider the probability to reach non-premium service
within time t. We consider the model for N = 16 workstations. The system
has 10130 states. Table 3 provides the running time (in seconds) for precision
values ranging from 10−4 to 10−10 for time bounds t = 1 and t = 100, respec-
tively. Again, the calculation based on triple nets is considerably faster, especially
for higher precision. When increasing the time bound t, the running time grows
proportionaly to t. When increasing the precision by a factor of 10, the runtime
increases by a factor of around 2.2. This is to be expected, as the third root of 10
is approximately 2.15.

In this example, the discretisation technique used in MRMC [15] is slower, but
comparable, with our single nets configuration. The uniformisation technique in
[11] is faster than our technique on this example. A reason for this is that there are

38



only three states in the model where the decision of how to allocate the repair unit
makes a difference; these are the positions where the backbone and one (or both)
of the switches are down. Thus, whereas our approach iterates through all actions
for finding the optimal, the uniformisation based heuristics in [11] ignore this and
treats this model almost like a CTMC. This inspires an interesting future work of
dynamically adjustable the interval length, especially for models with only few
switching points.

6. Conclusion

In this article we have proposed efficient approximation algorithms for solving
the time-bounded reachability problem for CTMDPs. Existing approaches based
on discretisation or uniformisation provide an accuracy of O(ε2) for each ε length
interval. The bottleneck of these approaches is the high number of discretised
steps needed, which is reciprocal of the required precision. We have proposed a
sequence of approximations achieving O(ε3), O(ε4) and O(ε5) accuracies, allow-
ing us to reduce the number of steps considerably, which is also confirmed by our
experimental results.

Furthermore, we would like to extend our approach to other properties such as
finite-horizon expected rewards [6], or reward bounded reachability problem [36].
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markov decisions, in: Automated Technology for Verification and Analy-
sis, Springer International Publishing, 2015, pp. 166–182.

[33] G. Birkhoff, G.-C. Rota, Ordinary Differential Equations , 3rd Ed., John
Wiley and Sons, New York, NY, 1978.

[34] B. R. Haverkort, H. Hermanns, J.-P. Katoen, On the use of model checking
techniques for dependability evaluation, in: SRDS, 2000, pp. 228–237.

[35] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, D. N. Jansen, The
ins and outs of the probabilistic model checker MRMC, in: QEST, 2009, pp.
167–176.

[36] H. Fu, Maximal cost-bounded reachability probability on continuous-time
Markov decision processes, CoRR abs/1310.2514.

[37] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations
I (2nd revised. ed.): Nonstiff Problems, Springer-Verlag, New York, 1993.

Appendix A. Collocation Methods for CTMDPs

In the numerical evaluations of CTMCs, numerical methods like collocation
techniques play an important role. We briefly discuss the limits of these methods
when applied to CTMDPs, and in particular we will focus on the Runge-Kutta
method. On sufficiently smooth functions, the Runge-Kutta methods obtain very
high precision. For example, the RK4 method obtains a step error of O(ε5) for
each interval of length ε. However, these results critically depend on the degree
of smoothness of the functor describing the dynamics. To obtain this precision,
the functor needs to be four times continuously differentiable [37, p.157]. Unfor-
tunately, the Bellman equations describing CTMDPs do not have this property. In
fact, the functor defined by the Bellman equations is not even once continuously
differentiable due to the inf and/or sup operators they contain.
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Figure A.5: The left graph shows the variation of the first projection of the functor f (that is, of
max{0, y2}) in the second argument (that is, of y2). The right graph shows the respective partial
derivation in direction y2 on for the values on this line. In the origin (0,0) itself, f is clearly not
differentiable.

In this appendix we demonstrate on a simple example that the reduced preci-
sion is not merely a problem in the proof, but that the precision deteriorates once
an inf or sup operator is introduced. We then show that the effect observed in the
simple example can also be observed in the Bellman equations on the example
CTMDP from Figure 1.

Appendix A.1. A Simplified Example
Maximisation (or minimisation) in the functor that describes the dynamics of

the system results in functors with limited smoothness, which breaks the proof of
the precision of Runge-Kutta method (incl. Collocation techniques). In order to
demonstrate that this is not only a technicality in the proof of the quality of Runge-
Kutta methods, we show on a simple example how the step precision deteriorates.

Using the notation of http://en.wikipedia.org/wiki/
Runge-Kutta\_methods (but dropping the dependency in t, that is
y′ = f(y)), consider a function y = (y1, y2) with dynamics—the functor
f—defined by y1′ = max{0, y2} and y2′ = 1. Note that the functor f is not
partially differentiable at (0, 0) in the second argument, see Figure A.5.

Let us study the effect this has on the Runge-Kutta method on an interval of
size h, using the start value yn = (0,−1

2
h). Applying RK4, we get

• k1 = f
(
(0,−1

2
h)
)

= (0, 1),

• k2 = f
(
(0, 0)

)
= (0, 1),

• k3 = f
(
(0, 0)

)
= (0, 1),
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• k4 = f
(
(0, 1

2
h)
)

= (1
2
h, 1), and

• yn+1 = yn + 1
6
h(k1 + 2k2 + 2k3 + k4) = (h2/12, h/2).

The analytical evaluation, however, provides (h2/8,h/2) which differs from
the provided result by 1

24
h2 in the first projection. Note that the expected dif-

ference in the first projection is in the order of h2 if we place the point where
max is in balance (the ‘swapping point’ that is related to the point where optimal
strategies change) uniformly at random at some point in the interval.

Still, one could object that we had to vary both the left and the right border of
the interval. But note that, if we take the initial value y(0) = (0,−1) = y0, seek
y(2), and cut the interval into 2n+ 1 pieces of equal length h = 2

2n+1
, then this is

the middle interval. (This family contains interval lengths of arbitrary small size.)

Appendix A.2. Connection to the Bellman Equations
The first step when applying this to the Bellman equations is to convince our-

selves that their functor F =
⊗

l∈L Fl with Fl = opt
∑
. . . is indeed not differen-

tiable. We use g for the arguments of F in order to distinguish it from the solution
f , where f(t) is the time-bounded reachability probability at time t.

For this, we simply re-use the example from Figure 1. The particular functor
F is not differentiable in the origin: varying FlR in the direction gl provides the
function shown in Figure A.7, showing that FlR is not differentiable in the origin.

(Due to the direction of the evaluation, this is the ‘rightmost’ point where the
optimal strategy changes.)

Again, differentiating FlR(f(t1)) in the direction gl provides a non-
differentiable function. (In fact, a function similar to the function shown in Figure
A.7, but with adjusted x-axis.)

An analytical argument with e functions is more involved than with the toy
example from the previous subsection. However, when the mesh length (or: in-
terval size) goes towards 0, then the ascent of the e functions is almost constant
throughout the mesh/interval. In the limit, the effect is the same and the error in
the order of h2.

44



-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2

time

y2
y1

Figure A.6: y1 and y2 from the solution of the ODE of the simplified example in the time interval
[0, 2].

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

gl

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

gl

Figure A.7: The left graph shows the variation of the first projection of the functor F in the
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