788 research outputs found

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial

    Incentive Stackelberg Mean-payoff Games

    Get PDF
    We introduce and study incentive equilibria for multi-player meanpayoff games. Incentive equilibria generalise well-studied solution concepts such as Nash equilibria and leader equilibria (also known as Stackelberg equilibria). Recall that a strategy profile is a Nash equilibrium if no player can improve his payoff by changing his strategy unilaterally. In the setting of incentive and leader equilibria, there is a distinguished player called the leader who can assign strategies to all other players, referred to as her followers. A strategy profile is a leader strategy profile if no player, except for the leader, can improve his payoff by changing his strategy unilaterally, and a leader equilibrium is a leader strategy profile with a maximal return for the leader. In the proposed case of incentive equilibria, the leader can additionally influence the behaviour of her followers by transferring parts of her payoff to her followers. The ability to incentivise her followers provides the leader with more freedom in selecting strategy profiles, and we show that this can indeed improve the payoff for the leader in such games. The key fundamental result of the paper is the existence of incentive equilibria in mean-payoff games. We further show that the decision problem related to constructing incentive equilibria is NP-complete. On a positive note, we show that, when the number of players is fixed, the complexity of the problem falls in the same class as two-player mean-payoff games. We also present an implementation of the proposed algorithms, and discuss experimental results that demonstrate the feasibility of the analysis of medium sized games.Comment: 15 pages, references, appendix, 5 figure

    PranCS: A protocol and discrete controller synthesis tool

    Get PDF
    © 2017, Springer International Publishing AG. PranCS is a tool for synthesizing protocol adapters and discrete controllers. It exploits general search techniques such as simulated annealing and genetic programming for homing in on correct solutions, and evaluates the fitness of candidates by using model-checking results. Our Proctocol and Controller Synthesis (PranCS) tool uses NuSMV as a back-end for the individual model-checking tasks and a simple candidate mutator to drive the search. PranCS is also designed to explore the parameter space of the search techniques it implements. In this paper, we use PranCS to study the influence of turning various parameters in the synthesis process

    Optimal Tableaux Method for Constructive Satisfiability Testing and Model Synthesis in the Alternating-time Temporal Logic ATL+

    Full text link
    We develop a sound, complete and practically implementable tableaux-based decision method for constructive satisfiability testing and model synthesis in the fragment ATL+ of the full Alternating time temporal logic ATL*. The method extends in an essential way a previously developed tableaux-based decision method for ATL and works in 2EXPTIME, which is the optimal worst case complexity of the satisfiability problem for ATL+ . We also discuss how suitable parametrizations and syntactic restrictions on the class of input ATL+ formulae can reduce the complexity of the satisfiability problem.Comment: 45 page

    Minimising good-for-games automata is NP-complete

    Get PDF
    This paper discusses the hardness of finding minimal good-for-games (GFG) Büchi, Co-Büchi, and parity automata with state based acceptance. The problem appears to sit between finding small deterministic and finding small nondeterministic automata, where minimality is NP-complete and PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that minimising Co-Büchi automata with transition based acceptance is tractable, which suggests that the complexity of minimising GFG automata might be cheaper than minimising deterministic automata. We show for the standard state based acceptance that the minimality of a GFG automaton is NP-complete for Büchi, Co-Büchi, and parity GFG automata. The proofs are a surprisingly straight forward generalisation of the proofs from deterministic Büchi automata: they use a similar reductions, and the same hard class of languages

    Efficient approximation of optimal control for continuous-time Markov games

    Get PDF
    We study the time-bounded reachability problem for continuous-time Markov decision processes (CTMDPs) and games (CTMGs). Existing techniques for this problem use discretisation techniques to partition time into discrete intervals of size ε, and optimal control is approximated for each interval separately. Current techniques provide an accuracy of on each interval, which leads to an infeasibly large number of intervals. We propose a sequence of approximations that achieve accuracies of , , and , that allow us to drastically reduce the number of intervals that are considered. For CTMDPs, the performance of the resulting algorithms is comparable to the heuristic approach given by Buchholz and Schulz, while also being theoretically justified. All of our results generalise to CTMGs, where our results yield the first practically implementable algorithms for this problem. We also provide memoryless strategies for both players that achieve similar error bounds

    A Game-Theoretic Foundation for the Maximum Software Resilience against Dense Errors

    Get PDF
    Safety-critical systems need to maintain their functionality in the presence of multiple errors caused by component failures or disastrous environment events. We propose a game-theoretic foundation for synthesizing control strategies that maximize the resilience of a software system in defense against a realistic error model. The new control objective of such a game is called kk -resilience. In order to be kk -resilient, a system needs to rapidly recover from infinitely many waves of a small number of up to kk close errors provided that the blocks of up to kk errors are separated by short time intervals, which can be used by the system to recover. We first argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We then show how the analysis of kk -resilience problems can be formulated as a model-checking problem of a mild extension to the alternating-time μ\mu -calculus (AMC). The witness for kk resilience, which can be provided by the model checker, can be used for providing control strategies that are optimal with respect to resilience. We show that the computational complexity of constructing such optimal control strategies is low and demonstrate the feasibility of our approach through an implementation and experimental results

    Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow

    Full text link
    Little is known about morphological instability of a solidification front during the crystal growth of a thin film of flowing supercooled liquid with a free surface: for example, the ring-like ripples on the surface of icicles. The length scale of the ripples is nearly 1 cm. Two theoretical models for the ripple formation mechanism have been proposed. However, these models lead to quite different results because of differences in the boundary conditions at the solid-liquid interface and liquid-air surface. The validity of the assumption used in the two models is numerically investigated and some of the theoretical predictions are compared with experiments.Comment: 30 pages, 9 figure

    Cryogenic Buffer Gas beams of AlF, CaF, MgF, YbF, Al, Ca, Yb and NO -- a comparison

    Get PDF
    Cryogenic buffer gas beams are central to many cold molecule experiments. Here, we use absorption and fluorescence spectroscopy to directly compare molecular beams of AlF, CaF, MgF, and YbF molecules, produced by chemical reaction of laser ablated atoms with fluorine rich reagents. The beam brightness for AlF is measured as 2 X 1012 molecules per steradian per pulse in a single rotational state, comparable to an Al atomic beam produced in the same setup. The CaF, MgF and YbF beams show an order of magnitude lower brightness than AlF, and far below the brightness of Ca and Yb beams. The addition of either NF3 or SF6 to the cell extinguishes the Al atomic beam, but has a minimal effect on the Ca and Yb beams. NF3 reacts more efficiently than SF6, as a significantly lower flow rate is required to maximise the molecule production, which is particularly beneficial for long-term stability of the AlF beam. We use NO as a proxy for the reactant gas as it can be optically detected. We demonstrate that a cold, rotationally pure NO beam can be generated by laser desorption, thereby gaining insight into the dynamics of the reactant gas inside the buffer gas cell
    • …
    corecore