92 research outputs found

    Change detection of isolated housing using a new hybrid approach based on object classification with optical and TerraSAR-X data

    Full text link
    Optical and microwave high spatial resolution images are now available for a wide range of applications. In this work, they have been applied for the semi-automatic change detection of isolated housing in agricultural areas. This article presents a new hybrid methodology based on segmentation of high-resolution images and image differencing. This new approach mixes the main techniques used in change detection methods and it also adds a final segmentation process in order to classify the change detection product. First, isolated building classification is carried out using only optical data. Then, synthetic aperture radar (SAR) information is added to the classification process, obtaining excellent results with lower complexity cost. Since the first classification step is improved, the total change detection scheme is also enhanced when the radar data are used for classification. Finally, a comparison between the different methods is presented and some conclusions are extracted from the study. © 2011 Taylor & Francis.Vidal Pantaleoni, A.; Moreno Cambroreno, MDR. (2011). Change detection of isolated housing using a new hybrid approach based on object classification with optical and TerraSAR-X data. International Journal of Remote Sensing. 32(24):9621-9635. doi:10.1080/01431161.2011.571297S962196353224BLAES, X., VANHALLE, L., & DEFOURNY, P. (2005). Efficiency of crop identification based on optical and SAR image time series. Remote Sensing of Environment, 96(3-4), 352-365. doi:10.1016/j.rse.2005.03.010Chen, Y., Shi, P., Fung, T., Wang, J., & Li, X. (2007). Object‐oriented classification for urban land cover mapping with ASTER imagery. International Journal of Remote Sensing, 28(20), 4645-4651. doi:10.1080/01431160500444731Dalla Mura, M., Benediktsson, J. A., Bovolo, F., & Bruzzone, L. (2008). An Unsupervised Technique Based on Morphological Filters for Change Detection in Very High Resolution Images. IEEE Geoscience and Remote Sensing Letters, 5(3), 433-437. doi:10.1109/lgrs.2008.917726Dell’Acqua, F., & Gamba, P. (2006). Discriminating urban environments using multiscale texture and multiple SAR images. International Journal of Remote Sensing, 27(18), 3797-3812. doi:10.1080/01431160600557572Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621. doi:10.1109/tsmc.1973.4309314Im, J., Jensen, J. R., & Tullis, J. A. (2008). Object‐based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing, 29(2), 399-423. doi:10.1080/01431160601075582Lhomme, S., He, D., Weber, C., & Morin, D. (2009). A new approach to building identification from very‐high‐spatial‐resolution images. International Journal of Remote Sensing, 30(5), 1341-1354. doi:10.1080/01431160802509017LOBO, A., CHIC, O., & CASTERAD, A. (1996). Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation. International Journal of Remote Sensing, 17(12), 2385-2400. doi:10.1080/01431169608948779Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365-2401. doi:10.1080/0143116031000139863Shimabukuro, Y. E., Almeida‐Filho, R., Kuplich, T. M., & de Freitas, R. M. (2007). Quantifying optical and SAR image relationships for tropical landscape features in the Amazônia. International Journal of Remote Sensing, 28(17), 3831-3840. doi:10.1080/01431160701236829Stramondo, S., Bignami, C., Chini, M., Pierdicca, N., & Tertulliani, A. (2006). Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies. International Journal of Remote Sensing, 27(20), 4433-4447. doi:10.1080/01431160600675895Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalization techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 51(3), 117-126. doi:10.1016/0924-2716(96)00018-

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9g€¯mm to global mean sea level, with the rate of mass loss rising from 105g€¯Gtg€¯yr-1 between 1992 and 1996 to 372g€¯Gtg€¯yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9g€¯Gtg€¯yr-1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86g€¯Gtg€¯yr-1 in 2017 to 444g€¯Gtg€¯yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9g€¯Gtg€¯yr-1) and, to a lesser extent, from the Antarctic Peninsula (13±5g€¯Gtg€¯yr-1). East Antarctica remains close to a state of balance, with a small gain of 3±15g€¯Gtg€¯yr-1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at 10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)

    Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data

    Full text link
    We employ Sentinel-1a C band satellite radar interferometry data in Terrain Observation with Progressive Scans mode to map the grounding line and ice velocity of Pope, Smith, and Kohler glaciers, in West Antarctica, for the years 2014–2016 and compare the results with those obtained using Earth Remote Sensing Satellites (ERS-1/2) in 1992, 1996, and 2011. We observe an ongoing, rapid grounding line retreat of Smith at 2 km/yr (40 km since 1996), an 11 km retreat of Pope (0.5 km/yr), and a 2 km readvance of Kohler since 2011. The variability in glacier retreat is consistent with the distribution of basal slopes, i.e., fast along retrograde beds and slow along prograde beds. We find that several pinning points holding Dotson and Crosson ice shelves disappeared since 1996 due to ice shelf thinning, which signal the ongoing weakening of these ice shelves. Overall, the results indicate that ice shelf and glacier retreat in this sector remain unabated

    Mass balance reassessment of glaciers draining into the Abbot and Getz Ice Shelves of West Antarctica

    Get PDF
    We present a reassessment of input-output method ice mass budget estimates for the Abbot and Getz regions of West Antarctica using CryoSat-2-derived ice thickness estimates. The mass budget is 8 ± 6 Gt yr−1 and 5 ± 17 Gt yr−1 for the Abbot and Getz sectors, respectively, for the period 2006–2008. Over the Abbot region, our results resolve a previous discrepancy with elevation rates from altimetry, due to a previous 30% overestimation of ice thickness. For the Getz sector, our results are at the more positive bound of estimates from other techniques. Grounding line velocity increases up to 20% between 2007 and 2014 alongside mean elevation rates of −0.67 ± 0.13 m yr−1 between 2010 and 2013 indicate the onset of a dynamic thinning signal. Mean snowfall trends of −0.33 m yr−1 water equivalent since 2006 indicate recent mass trends are driven by both ice dynamics and surface processes

    Mass balance of the Greenland Ice Sheet from 1992 to 2018

    Get PDF
    In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9 mm to global mean sea level, with the rate of mass loss rising from 105 Gt yr−1 between 1992 and 1996 to 372 Gt yr−1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9 Gt yr−1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86 Gt yr−1 in 2017 to 444 Gt yr−1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9 Gt yr−1) and, to a lesser extent, from the Antarctic Peninsula (13±5 Gt yr−1). East Antarctica remains close to a state of balance, with a small gain of 3±15 Gt yr−1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)

    West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability

    Get PDF
    Mass loss from the Amundsen Sea sector of the West Antarctic Ice Sheet has increased in recent decades, suggestive of sustained ocean forcing or an ongoing, possibly unstable, response to a past climate anomaly. Lengthening satellite records appear to be incompatible with either process, however, revealing both periodic hiatuses in acceleration and intermittent episodes of thinning. Here we use ocean temperature, salinity, dissolved-oxygen and current measurements taken from 2000 to 2016 near the Dotson Ice Shelf to determine temporal changes in net basal melting. A decadal cycle dominates the ocean record, with melt changing by a factor of about four between cool and warm extremes via a nonlinear relationship with ocean temperature. A warm phase that peaked around 2009 coincided with ice-shelf thinning and retreat of the grounding line, which re-advanced during a post-2011 cool phase. These observations demonstrate how discontinuous ice retreat is linked with ocean variability, and that the strength and timing of decadal extremes is more influential than changes in the longer-term mean state. The nonlinear response of melting to temperature change heightens the sensitivity of Amundsen Sea ice shelves to such variability, possibly explaining the vulnerability of the ice sheet in that sector, where subsurface ocean temperatures are relatively high

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9g€¯mm to global mean sea level, with the rate of mass loss rising from 105g€¯Gtg€¯yr-1 between 1992 and 1996 to 372g€¯Gtg€¯yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9g€¯Gtg€¯yr-1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86g€¯Gtg€¯yr-1 in 2017 to 444g€¯Gtg€¯yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9g€¯Gtg€¯yr-1) and, to a lesser extent, from the Antarctic Peninsula (13±5g€¯Gtg€¯yr-1). East Antarctica remains close to a state of balance, with a small gain of 3±15g€¯Gtg€¯yr-1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at 10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)
    corecore