226 research outputs found

    Multicriteria fuzzy-polynomial observer design for a 3DoF nonlinear electromechanical platform

    Full text link
    This paper proposes local fuzzy-polynomial observer discrete-time designs for state estimation of a nonlinear 3DoF electromechanical platform (fixed quadrotor). A trade-off between H∞ norm bounds and speed of convergence performance is taken into account in the design process. Actual experimental data are used to compare performance of the fuzzy polynomial design with classical ones based on the Takagi–Sugeno and linearized models, both using the same optimization criteria and design parameters.The authors are grateful to the financial support of the Spanish government under research project DPI2011-27845-C02-01 and FPI Grant BES-2009-013882, as well as to Generalitat Valenciana grant PROMETEOII/2013/004. The authors are also grateful to Ph.D. students A. Berna, J. Guzman and associate professor P.J. Garcia for their laboratory data acquisition work.Pitarch Pérez, JL.; Sala Piqueras, A. (2014). Multicriteria fuzzy-polynomial observer design for a 3DoF nonlinear electromechanical platform. Engineering Applications of Artificial Intelligence. 30:96-106. https://doi.org/10.1016/j.engappai.2013.11.006S961063

    On the protection of extrasolar Earth-like planets around K/M stars against galactic cosmic rays

    Full text link
    Previous studies have shown that extrasolar Earth-like planets in close-in habitable zones around M-stars are weakly protected against galactic cosmic rays (GCRs), leading to a strongly increased particle flux to the top of the planetary atmosphere. Two main effects were held responsible for the weak shielding of such an exoplanet: (a) For a close-in planet, the planetary magnetic moment is strongly reduced by tidal locking. Therefore, such a close-in extrasolar planet is not protected by an extended magnetosphere. (b) The small orbital distance of the planet exposes it to a much denser stellar wind than that prevailing at larger orbital distances. This dense stellar wind leads to additional compression of the magnetosphere, which can further reduce the shielding efficiency against GCRs. In this work, we analyse and compare the effect of (a) and (b), showing that the stellar wind variation with orbital distance has little influence on the cosmic ray shielding. Instead, the weak shielding of M star planets can be attributed to their small magnetic moment. We further analyse how the planetary mass and composition influence the planetary magnetic moment, and thus modify the cosmic ray shielding efficiency. We show that more massive planets are not necessarily better protected against galactic cosmic rays, but that the planetary bulk composition can play an important role.Comment: 7 figure

    The role of negative emotions in the social processes of entrepreneurship: Power rituals and shame-related appeasement behaviors

    Get PDF
    This paper examines the role of negative emotions in the social processes of entrepreneurship. Drawing on a study of Russian entrepreneurs, we develop a model of the emotional effects of social interactions between entrepreneurs and state officials. We found that negative emotions were elicited by these interactions and, in turn, fueled three forms of shame-related corrective appeasement behavior (reactive, anticipatory, and sporadic), which served to corrode entrepreneurial motivation and direct attention and energy away from business growth and development

    Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration

    Get PDF
    The new concept of mammalian sex maintenance establishes that particular key genes must remain active in the differentiated gonads to avoid genetic sex reprogramming, as described in adult ovaries after Foxl2 ablation. Dmrt1 plays a similar role in postnatal testes, but the mechanism of adult testis maintenance remains mostly unknown. Sox9 and Sox8 are required for postnatal male fertility, but their role in the adult testis has not been investigated. Here we show that after ablation of Sox9 in Sertoli cells of adult, fertile Sox8(-/-) mice, testis-to-ovary genetic reprogramming occurs and Sertoli cells transdifferentiate into granulosa-like cells. The process of testis regression culminates in complete degeneration of the seminiferous tubules, which become acellular, empty spaces among the extant Leydig cells. DMRT1 protein only remains in non-mutant cells, showing that SOX9/8 maintain Dmrt1 expression in the adult testis. Also, Sox9/8 warrant testis integrity by controlling the expression of structural proteins and protecting Sertoli cells from early apoptosis. Concluding, this study shows that, in addition to its crucial role in testis development, Sox9, together with Sox8 and coordinately with Dmrt1, also controls adult testis maintenance

    Electromagnetic corrections in eta --> 3 pi decays

    Full text link
    We re-evaluate the electromagnetic corrections to eta --> 3 pi decays at next-to-leading order in the chiral expansion, arguing that effects of order e^2(m_u-m_d) disregarded so far are not negligible compared to other contributions of order e^2 times a light quark mass. Despite the appearance of the Coulomb pole in eta --> pi+ pi- pi0 and cusps in eta --> 3 pi0, the overall corrections remain small.Comment: 21 pages, 11 figures; references updated, version published in EPJ

    Rare copy number variants contribute to congenital left-sided heart disease

    Get PDF
    Left-sided congenital heart disease (CHD) encompasses a spectrum of malformations that range from bicuspid aortic valve to hypoplastic left heart syndrome. It contributes significantly to infant mortality and has serious implications in adult cardiology. Although left-sided CHD is known to be highly heritable, the underlying genetic determinants are largely unidentified. In this study, we sought to determine the impact of structural genomic variation on left-sided CHD and compared multiplex families (464 individuals with 174 affecteds (37.5%) in 59 multiplex families and 8 trios) to 1,582 well-phenotyped controls. 73 unique inherited or de novo CNVs in 54 individuals were identified in the left-sided CHD cohort. After stringent filtering, our gene inventory reveals 25 new candidates for LS-CHD pathogenesis, such as SMC1A, MFAP4, and CTHRC1, and overlaps with several known syndromic loci. Conservative estimation examining the overlap of the prioritized gene content with CNVs present only in affected individuals in our cohort implies a strong effect for unique CNVs in at least 10% of left-sided CHD cases. Enrichment testing of gene content in all identified CNVs showed a significant association with angiogenesis. In this first family-based CNV study of left-sided CHD, we found that both co-segregating and de novo events associate with disease in a complex fashion at structural genomic level. Often viewed as an anatomically circumscript disease, a subset of left-sided CHD may in fact reflect more general genetic perturbations of angiogenesis and/or vascular biology

    Magnetic Catalysis: A Review

    Full text link
    We give an overview of the magnetic catalysis phenomenon. In the framework of quantum field theory, magnetic catalysis is broadly defined as an enhancement of dynamical symmetry breaking by an external magnetic field. We start from a brief discussion of spontaneous symmetry breaking and the role of a magnetic field in its a dynamics. This is followed by a detailed presentation of the essential features of the phenomenon. In particular, we emphasize that the dimensional reduction plays a profound role in the pairing dynamics in a magnetic field. Using the general nature of underlying physics and its robustness with respect to interaction types and model content, we argue that magnetic catalysis is a universal and model-independent phenomenon. In support of this claim, we show how magnetic catalysis is realized in various models with short-range and long-range interactions. We argue that the general nature of the phenomenon implies a wide range of potential applications: from certain types of solid state systems to models in cosmology, particle and nuclear physics. We finish the review with general remarks about magnetic catalysis and an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Version 2: references adde
    corecore