84 research outputs found

    How important are cyclones for emitting mineral dust aerosol in North Africa?

    Get PDF

    How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?

    Get PDF
    This study presents the first quantitative estimate of the mineral dust emission associated with atmospheric depressions and mobile cyclones in North Africa. Atmospheric depressions are automatically tracked at 925 hPa based on ERA-Interim data from the European Centre for Medium-Range Weather Forecasts for 1989–2008. A set of filter criteria is applied to identify mobile cyclones, i.e. migrating and long-lived cyclones. The shorter term cyclone is used as a synonym for mobile cyclones. Dust emission is calculated with a dust emission model driven by 10 m winds and soil moisture from ERA-Interim. Emission peaks during winter and spring with spatial averages of 250–380 g m−2 per month. Comparison of the dust source activation frequency from the model against SEVIRI satellite observation shows a good agreement in the BodĂ©lĂ© Depression but differences in the north and west of North Africa. Depressions are abundant, particularly in summer when the Saharan heat low is situated over West Africa and during spring in the lee of the Atlas Mountains. Up to 90% (55% annually and spatially averaged) of dust emission occurs within 10 degrees of these depressions, with embedded mechanisms such as nocturnal low-level jets playing a role. Cyclones are rarer and occur primarily north of 20° N in spring in agreement with previous studies and over summertime West Africa consistent with near-surface signatures of African Easterly Waves. Dust emission within 10 degrees of cyclones peaks over Libya with up to 25% in spring. Despite the overall small contribution of 4% annually and spatially averaged, cyclones coincide with particularly intense dust emission events exceeding the climatological mean by a factor of four to eight. Soil moisture weakens dust emission during cyclone passage by about 10%

    How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?

    Get PDF
    This study presents the first quantitative estimate of the mineral dust emission associated with atmospheric depressions and mobile cyclones in North Africa. Atmospheric depressions are automatically tracked at 925 hPa based on ERA-Interim data from the European Centre for Medium-Range Weather Forecasts for 1989–2008. A set of filter criteria is applied to identify mobile cyclones, i.e. migrating and long-lived cyclones. The shorter term cyclone is used as a synonym for mobile cyclones. Dust emission is calculated with a dust emission model driven by 10 m winds and soil moisture from ERA-Interim. Emission peaks during winter and spring with spatial averages of 250–380 g m−2 per month. Comparison of the dust source activation frequency from the model against SEVIRI satellite observation shows a good agreement in the BodĂ©lĂ© Depression but differences in the north and west of North Africa. Depressions are abundant, particularly in summer when the Saharan heat low is situated over West Africa and during spring in the lee of the Atlas Mountains. Up to 90% (55% annually and spatially averaged) of dust emission occurs within 10 degrees of these depressions, with embedded mechanisms such as nocturnal low-level jets playing a role. Cyclones are rarer and occur primarily north of 20° N in spring in agreement with previous studies and over summertime West Africa consistent with near-surface signatures of African Easterly Waves. Dust emission within 10 degrees of cyclones peaks over Libya with up to 25% in spring. Despite the overall small contribution of 4% annually and spatially averaged, cyclones coincide with particularly intense dust emission events exceeding the climatological mean by a factor of four to eight. Soil moisture weakens dust emission during cyclone passage by about 10%

    Satellites reveal Earth's seasonally shifting dust emission sources

    Get PDF
    Establishing mineral dust impacts on Earth's systems requires numerical models of the dust cycle. Differences between dust optical depth (DOD) measurements and modelling the cycle of dust emission, atmospheric transport, and deposition of dust indicate large model uncertainty due partially to unrealistic model assumptions about dust emission frequency. Calibrating dust cycle models to DOD measurements typically in North Africa, are routinely used to reduce dust model magnitude. This calibration forces modelled dust emissions to match atmospheric DOD but may hide the correct magnitude and frequency of dust emission events at source, compensating biases in other modelled processes of the dust cycle. Therefore, it is essential to improve physically based dust emission modules. Here we use a global collation of satellite observations from previous studies of dust emission point source (DPS) dichotomous frequency data. We show that these DPS data have little-to-no relation with MODIS DOD frequency. We calibrate the albedo-based dust emission model using the frequency distribution of those DPS data. The global dust emission uncertainty constrained by DPS data (±3.8 kg m−2 y−1) provides a benchmark for dust emission model development. Our calibrated model results reveal much less global dust emission (29.1 ± 14.9 Tg y−1) than previous estimates, and show seasonally shifting dust emission predominance within and between hemispheres, as opposed to a persistent North African dust emission primacy widely interpreted from DOD measurements. Earth's largest dust emissions, proceed seasonally from East Asian deserts in boreal spring, to Middle Eastern and North African deserts in boreal summer and then Australian shrublands in boreal autumn-winter. This new analysis of dust emissions, from global sources of varying geochemical properties, have far-reaching implications for current and future dust-climate effects. For more reliable coupled representation of dust-climate projections, our findings suggest the need to re-evaluate dust cycle modelling and benefit from the albedo-based parameterisation

    Elucidating Hidden and Enduring Weaknesses in Dust Emission Modeling

    Get PDF
    Large-scale classical dust cycle models, developed more than two decades ago, assume for simplicity that the Earth's land surface is devoid of vegetation, reduce dust emission estimates using a vegetation cover complement, and calibrate estimates to observed atmospheric dust optical depth (DOD). Consequently, these models are expected to be valid for use with dust-climate projections in Earth System Models. We reveal little spatial relation between DOD frequency and satellite observed dust emission from point sources (DPS) and a difference of up to 2 orders of magnitude. We compared DPS data to an exemplar traditional dust emission model (TEM) and the albedo-based dust emission model (AEM) which represents aerodynamic roughness over space and time. Both models overestimated dust emission probability but showed strong spatial relations to DPS, suitable for calibration. Relative to the AEM calibrated to the DPS, the TEM overestimated large dust emission over vast vegetated areas and produced considerable false change in dust emission. It is difficult to avoid the conclusion that calibrating dust cycle models to DOD has hidden for more than two decades, these TEM modeling weaknesses. The AEM overcomes these weaknesses without using masks or vegetation cover data. Considerable potential therefore exists for ESMs driven by prognostic albedo, to reveal new insights of aerosol effects on, and responses to, contemporary and environmental change projections

    Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods

    Get PDF
    Mass deposition fluxes of mineral dust to the tropical northeast Atlantic Ocean were determined within this study. In the framework of SOPRAN (Surface Ocean Processes in the Anthropocene), the interaction between the atmosphere and the ocean in terms of material exchange were investigated at the Cape Verde atmospheric observatory (CVAO) on the island Sao Vicente for January 2009. Five different methods were applied to estimate the deposition flux, using different meteorological and physical measurements, remote sensing, and regional dust transport simulations. The set of observations comprises micrometeorological measurements with an ultra-sonic anemometer and profile measurements using 2-D anemometers at two different heights, and microphysical measurements of the size-resolved mass concentrations of mineral dust. In addition, the total mass concentration of mineral dust was derived from absorption photometer observations and passive sampling. The regional dust model COSMO-MUSCAT was used for simulations of dust emission and transport, including dry and wet deposition processes. This model was used as it describes the AOD's and mass concentrations realistic compared to the measurements and because it was run for the time period of the measurements. The four observation-based methods yield a monthly average deposition flux of mineral dust of 12–29 ng m−2 s−1. The simulation results come close to the upper range of the measurements with an average value of 47 ng m−2 s−1. It is shown that the mass deposition flux of mineral dust obtained by the combination of micrometeorological (ultra-sonic anemometer) and microphysical measurements (particle mass size distribution of mineral dust) is difficult to compare to modeled mass deposition fluxes when the mineral dust is inhomogeneously distributed over the investigated area

    Solid-phase phosphorus speciation in Saharan Bodélé depression dusts and source sediments

    Get PDF
    Phosphorus (P) is one of the most important limiting nutrients for the growth of oceanic phytoplankton and terrestrial ecosystems, which in turn contributes to CO2 sequestration. The solid-phase speciation of P will influence its solubility and hence its availability to such ecosystems. This study reports on the results of X-ray diffraction, electron microprobe chemical analysis and X-ray mapping, chemical extractions and X-ray absorption near-edge spectroscopy analysis carried out to determine the solid-phase speciation of P in dusts and their source sediments from the Saharan BodĂ©lĂ© Depression, the world’s largest single source of dust. Chemical extraction data suggest that the BodĂ©lĂ© dusts contain 28 to 60% (mean 49%) P sorbed to, or co-precipitated with Fe (hydr)oxides, < 10% organic P, 21-50% (mean 32%) detrital apatite P, and 10-22% (mean 15%) authigenic-biogenic apatite P. This is confirmed by the other analyses, which also suggest that the authigenic-biogenic apatite P is likely fish bone and scale, and that this might form a larger proportion of the apatite pool (33 +/− 22%) than given by the extraction data. This is the first-ever report of fish material in aeolian dust, and it is significant because P derived from fish bone and scale is relatively soluble and is often used as a soil fertilizer. Therefore, the fish-P will likely be the most readily form of BodĂ©lĂ© P consumed during soil weathering and atmospheric processing, but given time and acid dissolution, the detrital apatite, Fe-P and organic-P will also be made available. The BodĂ©lĂ© dust input of P to global ecosystems will only have a limited life, however, because its major source materials, diatomite in the BodĂ©lĂ© Depression, undergo persistent deflation and have a finite thickness

    Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    Get PDF
    International audienceThe Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance

    Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice

    Get PDF
    Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life
    • 

    corecore