32 research outputs found

    Modeling the Measurements of Cochlear Microcirculation and Hearing Function after Loud Noise

    Get PDF
    Objective: Recent findings support the crucial role of microcirculatory disturbance and ischemia for hearing impairment especially after noise-induced hearing loss (NIHL). The aim of this study was to establish an animal model for in vivo analysis of cochlear microcirculation and hearing function after a loud noise to allow precise measurements of both parameters in vivo. Study Design: Randomized controlled trial. Setting: Animal study. Subjects and Methods: After assessment of normacusis (0 minutes) using evoked auditory brainstem responses (ABRs), noise (106-dB sound pressure level [SPL]) was applied to both ears in 6 guinea pigs for 30 minutes while unexposed animals served as controls. In vivo fluorescence microscopy of the stria vascularis capillaries was performed after surgical exposure of 1 cochlea. ABR measurements were derived from the contralateral ear. Results: After noise exposure, red blood cell velocity was reduced significantly by 24.3% (120 minutes) and further decreased to 44.5% at the end of the observation (210 minutes) in contrast to stable control measurements. Vessel diameters were not affected in both groups. A gradual decrease of segmental blood flow became significant (38.1%) after 150 minutes compared with controls. Hearing thresholds shifted significantly from 20.0 ± 5.5 dB SPL (0 minutes) to 32.5 ± 4.2dB SPL (60 minutes) only in animals exposed to loud noise. Conclusion: With regard to novel treatments targeting the stria vascularis in NIHL, this standardized model allows us to analyze in detail cochlear microcirculation and hearing function in vivo

    Combined therapy with ibrutinib and bortezomib followed by ibrutinib maintenance in relapsed or refractory mantle cell lymphoma and high-risk features: a phase 1/2 trial of the European MCL network (SAKK 36/13).

    Get PDF
    BACKGROUND The Bruton's tyrosine kinase inhibitor ibrutinib and the proteasome inhibitor bortezomib have single-agent activity, non-overlapping toxicities, and regulatory approval in mantle cell lymphoma (MCL). In vitro, their combination provides synergistic cytotoxicity. In this investigator-initiated phase 1/2 trial, we established the recommended phase 2 dose of ibrutinib in combination with bortezomib, and assessed its efficacy in patients with relapsed or refractory MCL. METHODS In this phase 1/2 study open in 15 sites in Switzerland, Germany and Italy, patients with relapsed or refractory MCL after ≤2 lines of chemotherapy and both ibrutinib-naïve and bortezomib-naïve received six cycles of ibrutinibb and bortezomib, followed by ibrutinib maintenance. For the phase 1 study, a standard 3 + 3 dose escalation design was used to determine the recommended phase 2 dose of ibrutinib in combination with bortezomib. The primary endpoint in phase 1 was the dose limiting toxicities in cycle 1. The phase 2 study was an open-label, single-arm trial with a Simon's two-stage min-max design, with a primary endpoint of overall response rate (ORR) assessed by CT/MRI. This study was registered with ClinicalTrials.gov, NCT02356458. FINDINGS Between August 2015 and September 2016, nine patients were treated in the phase 1 study, and 49 patients were treated between November 2016 and March 2020 in the phase 2 of the trial. The ORR was 81.8% (90% CI 71.1, 89.8%, CR(u) 21.8%) which increased with continued ibrutinib (median 10.6 months) to 87.3%, (CR(u) 41.8%). 75.6% of patients had at least one high-risk feature (Ki-67 > 30%, blastoid or pleomorphic variant, p53 overexpression, TP53 mutations and/or deletions). In these patients, ibrutinib and bortezomib were also effective with an ORR of 74%, increasing to 82% during maintenance. With a median follow-up of 25.4 months, the median duration of response was 22.7, and the median PFS was 18.6 months. PFS reached 30.8 and 32.9 months for patients with a CR or Cru, respectively. INTERPRETATION The combination of ibrutinib and bortezomib shows durable efficacy in patients with relapsed or refractory MCL, also in the presence of high-risk features. FUNDING SAKK (Hubacher Fund), Swiss State Secretariat for Education, Research and Innovation, Swiss Cancer Research Foundation, and Janssen

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability

    Decline in the number of patients with meningitis in German hospitals during the COVID-19 pandemic

    Get PDF
    BACKGROUND AND OBJECTIVES: In 2020, a wide range of hygiene measures was implemented to mitigate infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In consequence, pulmonary infections due to other respiratory pathogens also decreased. Here, we evaluated the number of bacterial and viral meningitis and encephalitis cases during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: In a multicentre retrospective analysis of data from January 2016 until December 2020, numbers of patients diagnosed with bacterial meningitis and other types of CNS infections (such as viral meningitis and encephalitis) at 26 German hospitals were studied. Furthermore, the number of common meningitis-preceding ear-nose-throat infections (sinusitis, mastoiditis and otitis media) was evaluated. RESULTS: Compared to the previous years, the total number of patients diagnosed with pneumococcal meningitis was reduced (n = 64 patients/year in 2020 vs. n = 87 to 120 patients/year between 2016 and 2019, all p < 0.05). Additionally, the total number of patients diagnosed with otolaryngological infections was significantly lower (n = 1181 patients/year in 2020 vs. n = 1525 to 1754 patients/year between 2016 and 2019, all p < 0.001). We also observed a decline in viral meningitis and especially enterovirus meningitis (n = 25 patients/year in 2020 vs. n = 97 to 181 patients/year between 2016 and 2019, all p < 0.001). DISCUSSION: This multicentre retrospective analysis demonstrates a decline in the number of patients treated for viral and pneumococcal meningitis as well as otolaryngological infections in 2020 compared to previous years. Since the latter often precedes pneumococcal meningitis, this may point to the significance of the direct spread of pneumococci from an otolaryngological focus such as mastoiditis to the brain as one important pathophysiological route in the development of pneumococcal meningitis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00415-022-11034-w

    Isoflurane in (Super-) Refractory Status Epilepticus: A Multicenter Evaluation

    Get PDF
    Background We aimed to determine the association between seizure termination and side effects of isoflurane for the treatment of refractory status epilepticus (RSE) and super-refractory status epilepticus (SRSE) in neurointensive care units (neuro-ICUs). Methods This was a multicenter retrospective study of patients with RSE/SRSE treated with isoflurane for status epilepticus termination admitted to the neuro-ICUs of nine German university centers during 2011–2018. Results We identified 45 patients who received isoflurane for the treatment of RSE/SRSE. During isoflurane treatment, electroencephalograms showed no epileptiform discharges in 33 of 41 (80%) patients, and burst suppression pattern was achieved in 29 of 41 patients (71%). RSE/SRSE was finally terminated after treatment with isoflurane in 23 of 45 patients (51%) for the entire group and in 13 of 45 patients (29%) without additional therapy. Lengths of stay in the hospital and in the neuro-ICU were significantly extended in cases of ongoing status epilepticus under isoflurane treatment (p = 0.01 for length of stay in the hospital, p = 0.049 for length in the neuro-ICU). During isoflurane treatment, side effects were reported in 40 of 45 patients (89%) and mainly included hypotension (n = 40, 89%) and/or infection (n = 20, 44%). Whether side effects occurred did not affect the outcome at discharge. Of 22 patients with follow-up magnetic resonance imaging, 2 patients (9%) showed progressive magnetic resonance imaging alterations that were considered to be potentially associated with RSE/SRSE itself or with isoflurane therapy. Conclusions Isoflurane was associated with a good effect in stopping RSE/SRSE. Nevertheless, establishing remission remained difficult. Side effects were common but without effect on the outcome at discharge

    Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes

    Get PDF
    Uranium (U) is of enormous global importance because of its use in energy generation, albeit with potential environmental legacies. While naturally occurring U is widespread in the Earth's crust at concentrations of ~1 to 3 ppm, higher concentrations can be found, includingwithin organicmatter (OM)-rich sediments, leading to economic extraction opportunities. The primary determinants of U behaviour in ore systems are pH, Eh, U oxidation state (U(IV), U(VI)) and the abundance of CO3 2– ions. The concentration/availability and interrelationships among such determinants vary, and the solubility and mobility of ions (e.g. OH-, CO3 2–, PO4 3-, SiO4 4-, SO4 2-) that compete for U (primarily as U(VI)) will also influence the mobility of U. In addition, the presence of OM can influence U mobility and fate by the degree of OMsorption to mineral surfaces (e.g. Fe- and Si- oxides and hydroxides). Within solid-phase OM, microbes can influence U oxidation state and U stability through direct enzymatic reduction, biosorption, biomineralisation and bioaccumulation. The biogenic UO2 product is, however, reported to be readily susceptible to reoxidation and therefore more likely remobilised over longer time periods. Thus several areas of uncertainty remain with respect to factors contributing to U accumulation, stability and/or (re)mobilisation. To address these uncertainties, this paper reviews U dynamics at both geological and molecular scales. Here we identify U-OMbond values that are in agreement, relatively strong, independent from ionic strength and which may facilitate either U mobilisation or immobilisation, depending on environmental conditions. We also examine knowledge gaps in the literature, with U-OM solubility data generally lacking in comparison to data for U sorption and dissolution, and little information available on multi-component relationships, such as UOM-V (V as vanadate). Furthermore, the capability ofOMto influence the oxidation state of U at near surface conditions remains unclear, as it can be postulated that electron shuttling by OM may contribute to changes in U redox state otherwise mediated by bacteria. Geochemical modelling of the environmental mobility of U will require incorporation of data from multi-corporation studies, as well as from studies of U-OM microbial interactions, all of which are considered in this review
    corecore