193 research outputs found

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention

    Diagnostic accuracy of endoscopic ultrasonography-guided tissue acquisition prior to resection of pancreatic carcinoma:a nationwide analysis

    Get PDF
    Introduction: Endoscopic ultrasonography guided tissue acquisition (EUS + TA) is used to provide a tissue diagnosis in patients with suspected pancreatic cancer. Key performance indicators (KPI) for these procedures are rate of adequate sample (RAS) and sensitivity for malignancy (SFM). Aim: assess practice variation regarding KPI of EUS + TA prior to resection of pancreatic carcinoma in the Netherlands. Patients and methods: Results of all EUS + TA prior to resection of pancreatic carcinoma from 2014–2018, were extracted from the national Dutch Pathology Registry (PALGA). Pathology reports were classified as: insufficient for analysis (b1), benign (b2), atypia (b3), neoplastic other (b4), suspected malignant (b5), and malignant (b6). RAS was defined as the proportion of EUS procedures yielding specimen sufficient for analysis. SFM was calculated using a strict definition (malignant only, SFM-b6), and a broader definition (SFM-b5+6). Results: 691 out of 1638 resected patients (42%) underwent preoperative EUS + TA. RAS was 95% (range 89–100%), SFM-b6 was 44% (20–77%), and SFM-b5+6 was 65% (53–90%). All centers met the performance target RAS>85%. Only 9 out of 17 met the performance target SFM-b5+6 > 85%. Conclusion: This nationwide study detected significant practice variation regarding KPI of EUS + TA procedures prior to surgical resection of pancreatic carcinoma. Therefore, quality improvement of EUS + TA is indicated

    Diagnostic accuracy of endoscopic ultrasonography-guided tissue acquisition prior to resection of pancreatic carcinoma:a nationwide analysis

    Get PDF
    Introduction: Endoscopic ultrasonography guided tissue acquisition (EUS + TA) is used to provide a tissue diagnosis in patients with suspected pancreatic cancer. Key performance indicators (KPI) for these procedures are rate of adequate sample (RAS) and sensitivity for malignancy (SFM). Aim: assess practice variation regarding KPI of EUS + TA prior to resection of pancreatic carcinoma in the Netherlands. Patients and methods: Results of all EUS + TA prior to resection of pancreatic carcinoma from 2014–2018, were extracted from the national Dutch Pathology Registry (PALGA). Pathology reports were classified as: insufficient for analysis (b1), benign (b2), atypia (b3), neoplastic other (b4), suspected malignant (b5), and malignant (b6). RAS was defined as the proportion of EUS procedures yielding specimen sufficient for analysis. SFM was calculated using a strict definition (malignant only, SFM-b6), and a broader definition (SFM-b5+6). Results: 691 out of 1638 resected patients (42%) underwent preoperative EUS + TA. RAS was 95% (range 89–100%), SFM-b6 was 44% (20–77%), and SFM-b5+6 was 65% (53–90%). All centers met the performance target RAS&gt;85%. Only 9 out of 17 met the performance target SFM-b5+6 &gt; 85%. Conclusion: This nationwide study detected significant practice variation regarding KPI of EUS + TA procedures prior to surgical resection of pancreatic carcinoma. Therefore, quality improvement of EUS + TA is indicated.</p

    Efficacy and tolerability of adjunctive lacosamide in pediatric patients with focal seizures

    Get PDF
    To evaluate efficacy and tolerability of adjunctive lacosamide in children and adolescents with uncontrolled focal (partial-onset) seizures.In this double-blind trial (SP0969; NCT01921205), patients (age ≥4-<17 years) with uncontrolled focal seizures were randomized (1:1) to adjunctive lacosamide/placebo. After a 6-week titration, patients who reached the target dose range for their weight (<30 kg: 8-12 mg/kg/d oral solution; ≥30-<50 kg: 6-8 mg/kg/d oral solution; ≥50 kg: 300-400 mg/d tablets) entered a 10-week maintenance period. The primary outcome was change in focal seizure frequency per 28 days from baseline to maintenance.Three hundred forty-three patients were randomized; 306 (lacosamide 152 of 171 [88.9%]; placebo 154 of 172 [89.5%]) completed treatment (titration and maintenance). Adverse events (AEs) were the most common reasons for discontinuation during treatment (lacosamide 4.1%; placebo 5.8%). From baseline to maintenance, percent reduction in focal seizure frequency per 28 days for lacosamide (n = 170) vs placebo (n = 168) was 31.7% (p = 0.0003). During maintenance, median percent reduction in focal seizure frequency per 28 days was 51.7% for lacosamide and 21.7% for placebo. Fifty percent responder rates (≥50% reduction) were 52.9% and 33.3% (odds ratio 2.17, p = 0.0006). During treatment, treatment-emergent AEs were reported by 67.8% lacosamide-treated patients (placebo 58.1%), most commonly (≥10%) somnolence (14.0%, placebo 5.2%) and dizziness (10.5%, placebo 3.5%).Adjunctive lacosamide was efficacious in reducing seizure frequency and generally well tolerated in patients (age ≥4-<17 years) with focal seizures.NCT01921205.This trial provides Class I evidence that for children and adolescents with uncontrolled focal seizures, adjunctive lacosamide reduces seizure frequency

    A theoretical foundation for multi-scale regular vegetation patterns

    Get PDF
    Self-organized regular vegetation patterns are widespread and thought to mediate ecosystem functions such as productivity and robustness, but the mechanisms underlying their origin and maintenance remain disputed. Particularly controversial are landscapes of overdispersed (evenly spaced) elements, such as North American Mima mounds, Brazilian murundus, South African heuweltjies, and, famously, Namibian fairy circles. Two competing hypotheses are currently debated. On the one hand, models of scale-dependent feedbacks, whereby plants facilitate neighbours while competing with distant individuals, can reproduce various regular patterns identified in satellite imagery. Owing to deep theoretical roots and apparent generality, scale-dependent feedbacks are widely viewed as a unifying and near-universal principle of regular-pattern formation despite scant empirical evidence. On the other hand, many overdispersed vegetation patterns worldwide have been attributed to subterranean ecosystem engineers such as termites, ants, and rodents. Although potentially consistent with territorial competition, this interpretation has been challenged theoretically and empirically and (unlike scale-dependent feedbacks) lacks a unifying dynamical theory, fuelling scepticism about its plausibility and generality. Here we provide a general theoretical foundation for self-organization of social-insect colonies, validated using data from four continents, which demonstrates that intraspecific competition between territorial animals can generate the large-scale hexagonal regularity of these patterns. However, this mechanism is not mutually exclusive with scale-dependent feedbacks. Using Namib Desert fairy circles as a case study, we present field data showing that these landscapes exhibit multi-scale patterning-previously undocumented in this system-that cannot be explained by either mechanism in isolation. These multi-scale patterns and other emergent properties, such as enhanced resistance to and recovery from drought, instead arise from dynamic interactions in our theoretical framework, which couples both mechanisms. The potentially global extent of animal-induced regularity in vegetation-which can modulate other patterning processes in functionally important ways-emphasizes the need to integrate multiple mechanisms of ecological self-organization

    Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy

    Get PDF
    Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P =.01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery

    Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Get PDF
    Cross-frequency coupling (CFC) between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC), is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN) during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz) phase and high frequency band (80–150 Hz) amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance

    Identifying Canadian Freshwater Fishes through DNA Barcodes

    Get PDF
    BACKGROUND: DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. METHODOLOGY/PRINCIPAL FINDINGS: We bi-directionally sequenced the standard 652 bp "barcode" region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. CONCLUSIONS/SIGNIFICANCE: The present study evidenced that freshwater fish species can be efficiently identified through the use of DNA barcoding, especially the species complex of small-sized species, and that the present COI library can be used for subsequent applications in ecology and systematics
    corecore