21 research outputs found

    The Paradox of Muscle Hypertrophy in Muscular Dystrophy

    Get PDF
    Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans and syndromes in mice, dogs, and cats. Affected humans and dogs have progressive disease that leads primarily to muscle atrophy. Mdx mice progress through an initial phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. Hypertrophy in humans has been attributed to deposition of fat and connective tissue (pseudohypertrophy). Increased muscle mass (true hypertrophy) has been documented in animal models. Muscle hypertrophy can exaggerate postural instability and joint contractures. Deleterious consequences of muscle hypertrophy should be considered when developing treatments for muscular dystrophy

    Mitochondrial Mutations in Subjects with Psychiatric Disorders

    Get PDF
    A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA

    Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch

    Alternative dystrophin gene transcripts in golden retriever muscular dystrophy

    No full text
    Golden retriever muscular dystrophy (GRMD), the canine model of Duchenne muscular dystrophy (DMD), is caused by a splice site mutation in the dystrophin gene. This mutation predicts a premature termination codon in exon 8 and a peptide that is 5% the size of normal dystrophin. Western blot analysis of skeletal muscle from GRMD dogs reveals a slightly truncated 390-kD protein that is approximately 91% the size of normal dystrophin. This 390-kD dystrophin suggests that GRMD dogs, like some DMD patients, employ a mechanism to overcome their predicted frameshift. Reverse-transcriptase polymerase chain reaction on GRMD muscle has revealed two in-frame dystrophin transcripts which lack either exons 3–9 or exons 5–12. Both transcripts could be translated into a dystrophin protein of approximately 390 kD. An understanding of how truncated dystrophin is produced in GRMD may allow this mechanism to be manipulated toward a potential therapy for DMD

    Molecular analysis of a spontaneous dystrophin `knockout' dog

    No full text
    We have determined the molecular basis for skeletal myopathy and dilated cardiomyopathy in two male German short-haired pointer (GSHP) littermates. Analysis of skeletal muscle demonstrated a complete absence of dystrophin on Western blot analysis. PCR analysis of genomic DNA revealed a deletion encompassing the entire dystrophin gene. Molecular cytogenetic analysis of lymphocytes from the dam and both dystrophic pups confirmed a visible deletion in the p21 region of the affected canine X chromosome. Utrophin is up-regulated in the skeletal muscle, but does not appear to ameliorate the dystrophic canine phenotype. This new canine model should further our understanding of the physiological and biochemical processes in Duchenne muscular dystrophy

    Supplementary Material for: Mitochondrial Complex I Deficiency in Schizophrenia and Bipolar Disorder and Medication Influence

    No full text
    <p>Subjects with schizophrenia (SZ) and bipolar disorder (BD) show decreased protein and transcript levels for mitochondrial complex I. In vitro results suggest antipsychotic and antidepressant drugs may be responsible. We measured complex I activity in BD, SZ, and controls and presence of antipsychotic and antidepressant medications, mitochondrial DNA (mtDNA) copy number, and the mtDNA “common deletion” in the brain. Complex I activity in the prefrontal cortex was decreased by 45% in SZ compared to controls (<i>p</i> = 0.02), while no significant difference was found in BD. Complex I activity was significantly decreased (<i>p</i> = 0.01) in pooled cases (SZ and BD) that had detectable psychotropic medications and drugs compared to pooled cases with no detectable levels. Subjects with age at onset in their teens and psychotropic medications showed decreased (<i>p</i> < 0.05) complex I activity compared to subjects with an adult age at onset. Both SZ and BD groups displayed significant increases (<i>p</i> < 0.05) in mtDNA copy number compared to controls; however, common deletion burden was not altered. Complex I deficiency is found in SZ brain tissue, and psychotropic medications may play a role in mitochondrial dysfunction. Studies of medication-free first-episode psychosis patients are needed to elucidate whether mitochondrial pathophysiology occurs independent of medication effects.</p
    corecore