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By the age of 3 years, his mother noted that his lower extremities grew in volume. 

Her attention was first drawn to this enlargement of his calves which entered his 

stockings with difficulty.

—Duchenne’s description of his first patient, Joseph 

Sarrazin, as cited by Tyler1

Mutations in the human dystrophin gene cause 2 clinical phenotypes, Duchenne muscular 

dystrophy (DMD) and Becker muscular dystrophy (BMD), distinguished principally based 

on the age at which patients lose the ability to ambulate.2,3 Boys with DMD become 

wheelchair users before 14 years of age, whereas those with BMD walk beyond age 16 

years.4 The basis for this clinical distinction can largely be traced to the fact that DMD 

mutations result in the loss of the mRNA reading frame, virtually eliminating dystrophin 

protein production, and BMD mutations preserve the reading frame, allowing production of 

a partially functional protein.5 Muscles of patients with both forms express variable 

pathologic changes that generally lead to profound muscle atrophy. In contrast, some 

muscles, most notably the gastrocnemius, enlarge. Although hypertrophy hastypically been 

attributed to deposition of fat and connective tissue, so-called pseudohypertrophy,6,7 imaging 

studies have shown true hypertrophy in some individuals.

There are 3 mammalian models in which spontaneous dystrophin gene mutations lead to 

distinct phenotypes of muscular dystrophy: the mdx mouse,8,9 golden retriever muscular 

dystrophy (GRMD) dog,10,11 and feline hypertrophic muscular dystrophy (FHMD) cat.12,13 

The GRMD model most closely mirrors DMD at multiple levels, including progressive 

disease that leads primarily to muscle atrophy. The mdx mouse progresses through an initial 

phase of muscle hypertrophy followed in old age by atrophy. In contrast, the FHMD cat has 

persistent muscle hypertrophy. The role of true hypertrophy has been more broadly accepted 

in these models, with less attention paid to contributions made by fat and connective tissue 

in muscle enlargement.

In principle, relative muscle sparing or hypertrophy could be either beneficial or detrimental. 

The benefits are obvious because preservation of strength should enhance motor function in 

activities ranging from ambulation to breathing. Harmful effects are less clear and relate to 

the potential for muscle hypertrophy to exacerbate contractures and postural instability. 

Additional deleterious consequences occur due to difficulties in eating because of glossal 

hypertrophy and regurgitation resulting from either esophageal hypomotility or obstruction 

at the level of the hypertrophied diaphragm. Whether the hypertrophy results from an actual 

increase in muscle mass or fat and connective tissue, studies directed at defining underlying 

mechanisms could provide insight into the pathogenesis of dystrophin deficiency and inform 

treatment development.
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VARIABLE MUSCLE INVOLVEMENT AND HYPERTROPHY

Effects of dystrophin deficiency vary among species, individuals, and muscles. Reasons for 

phenotypic variation are poorly understood and raise questions about primary versus 

secondary effects of dystrophin deficiency.14

DMD and BMD

Extensor muscles that undergo eccentric muscle contraction, such as the quadriceps femoris, 

are particularly vulnerable in DMD.15 In contrast, the extraocular muscles16 are largely 

spared, and other muscles undergo striking paradoxical hypertrophy. Although attention has 

focused on gastrocnemius (calf) enlargement (Fig. 1), hypertrophy occurs in many other 

muscles. Presumptive cases of DMD characterized by hypertrophy of the calves, deltoid, and 

infraspinatus muscles were seen in Italy and England as early as the 1830s well before 

Duchenne’s classic account.1 In a 1995 review of 84 patients with DMD from India, 94% 

had calf enlargement, followed by the infraspinatus (88%), deltoid (52%), and tibialis 

anterior (40%).17 The selective muscular involvement extended to different heads of the 

deltoid and quadriceps, which showed concomitant atrophy and hypertrophy. Calf 

hypertrophy was evident on physical examination in 20 of 26 (77%) BMD cases in another 

study.18 These patients were further studied with computed tomography to determine the 

pattern and course of muscle involvement. Hypertrophy was seen in the calves (42%), 

sartorius (42%), gracilis (42%), adductor longus (38%), semitendinosus (19%), and rectus 

femoris (11%). Patients with DMD and/or BMD have also been shown to have hypertrophy 

of the tongue (macroglossia),19 diaphragm,20 and hypothenar (palm)21 muscles, among 

others.

Dating to Duchenne’s monograph, muscle hypertrophy in DMD and BMD has been 

attributed to deposition of fat and connective tissue, giving rise to the term 

pseudohypertrophic muscular paralysis.1 Indeed, histopathologic studies have documented 

fibrosis and fatty change in the calves and other hypertrophied muscles.6,7 Walton22 

speculated that true hypertrophy also contributes to muscle enlargement, perhaps occurring 

early in the disease course, followed by pseudohypertrophy. However, because of inherent 

limitations of sequential muscle sampling in human patients, the time course and relative 

roles of true hypertrophy and pseudohypertrophy have remained unsettled. Specialized 

imaging techniques have complemented and, in some cases, essentially replaced 

histopathologic evaluation of muscle biopsy samples. Increasingly, use of these techniques 

has documented features consistent with a true increase in contractile mass. In one such 

study, 10 of 16 patients with BMD had calf enlargement on ultrasonography, and 9 of them 

were judged to have true hypertrophy.23 Another study, cited earlier, found that enlarged 

muscles visualized with computed tomography were often rounded and had normal 

densities, suggesting true hypertrophy.18 A further paper, in which magnetic resonance 

imaging (MRI) was evaluated, showed that the gracilis and sartorius muscles were relatively 

spared and/or hypertrophied in 10 patients with DMD.24 We are particularly intrigued by the 

relative sparing of the sartorius muscle (Fig. 2) because of our own studies of cranial 

sartorius hypertrophy in GRMD (see later).25
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Ideally, imaging and histopathologic results should be correlated to define the relative 

contributions that fat, fibrous connective tissue, and myofiber hyperplasia or hypertrophy 

make to muscle enlargement. Few such studies have been completed in DMD. In one paper 

that correlated computed tomography and histochemistry findings, apparent true 

hypertrophy of the gastrocnemius in a 7-year-old boy with DMD was judged to be caused by 

myofiber hyperplasia rather than hypertrophy.6 With this said, hypertrophied myofibers are 

also seen early in the disease and persist throughout life.7

The mdx Mouse

More extensive pathologic studies can be done with animal models, potentially allowing 

better definition of mechanisms contributing to differential muscle involvement. Just as in 

DMD, muscles are variably affected in the mdx mouse, ranging from the unaffected 

extraocular muscles26 to the severely involved diaphragm.27 Limb muscles undergo dramatic 

necrosis at 3 to 4 weeks of age followed by robust regeneration and muscle hypertrophy.
28–31 Changes vary among muscles, with the predominantly slow twitch soleus being more 

involved at 3 to 4 weeks29,32,33 and the fast twitch extensor digitorum longus at 32 weeks 

and beyond.29,33 Muscle hypertrophy causes mdx mice to be larger than normal between 

about 10 and 40 weeks of age, after which they lose weight in concert with a loss of muscle 

mass.28,29,33 Reflecting the early strong regenerative response, mdx mice have increased 

numbers of small regenerating fibers with central nuclei at 3 weeks of age.28,32,34 The 

percentage of larger regenerated myofibers increases with age, approaching 70% and 90% in 

the soleus and extensor digitorum longus, respectively, by 26 weeks.32 Because populations 

of both small and large fibers occur concomitantly, mean fiber diameter of mdx mice 

typically is normal.28,35 The concomitant occurrence of large and small fibers suggests that 

both hyperplasia and hypertrophy contribute to muscle hypertrophy.31

Unlike DMD, mdx mice have minimal fatty change and fibrosis,33 indirectly implicating 

true hypertrophy as the cause for muscle enlargement.31 The time course of pathologic 

lesions in the mdx mouse leads to corresponding functional changes, with affected mice 

being weaker at 2 to 4 weeks and then recovering.36–38 Absolute tension generated by mdx 

muscles is typically higher by 8 to 16 weeks of age.31,36,39 When corrected for cross-

sectional area, isomeric soleus muscle force of younger (≤100 days) mdx mice was lower 

than normal, whereas values for older (≥100 days) mdx mice were higher.39 Coulton and 

colleagues39 commented that, “when mdx mice lose muscle fibers by necrosis, they do not 

just replace them with equally efficient new muscle, but with heavier, stronger, muscles than 

the wild-type.” Typical of this pattern and consistent with our own findings in the GRMD 

dog (see later), isometric tension generated by the tibialis anterior is considerably lower in 

mdx mice at 3 to 4 weeks36 but exceeds normal values by 8 to 16 weeks.31,36 Pathologic 

changes in the tibialis anterior also occur earlier than those in the soleus and gastrocnemius 

muscles.36 Taken together, these mdx mouse data show clear evidence that early necrosis 

leads to a dramatic regenerative response that can lead to functional hypertrophy.

Contraction kinetics in mdx mice also differ from normal. Relaxation times were increased 

in the soleus, independent of age,40 and in the tibialis anterior at 3 to 4 weeks36 but not at 

later ages.36,37 Although twitch-tetany ratios were decreased compared with normal in the 
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soleus of variably aged mdx mice,40 a reverse relationship was seen in the tibialis anterior at 

7 to 8 weeks.37 Relaxation times of the mdx tibialis anterior were also increased at 3 to 4 

weeks,36 but values normalized in older mice.36,37

FHMD

Male cats with weakness, histologic features typical of muscular dystrophy, and gross and 

histologic evidence of muscle hypertrophy were characterized before the discovery of 

dystrophin.41 Subsequently, an analogous syndrome was reported in cats with dystrophin 

deficiency.12,13,42 One of these FHMD cats was shown to have a dystrophin gene deletion 

that included the skeletal muscle and neuronal Purkinje cell promoters and first exons.42 The 

most striking clinical feature in all these cats was gross hypertrophy of their axial and 

appendicular muscles, as well as the tongue, diaphragm, and esophageal muscularis. In one 

study, 4 muscles (biceps brachii, cranial tibialis, gastrocnemius, and diaphragm) from 2 

FHMD cats weighed twice as much as those from comparably sized normal cats.12 Physical 

evidence of hypertrophy has been noted as early as 3 months13 and seems to become more 

pronounced with age. As an example, the circumference of the neck in one cat increased 

from 28 to 33 cm between 14 and 25 months of age.12 On microscopic examination, FHMD 

cats have myofiber size variation, with increased populations of both small regenerating and 

hypertrophied myofibers and an overall mean myofiber diameter in the normal range.43 In 

keeping with progressive hypertrophy, the mean myofiber diameter of FHMD cats increased 

more so than that of normal cats between 3 to 4 and 6 to 9 months of age. In addition, there 

was myofiber necrosis and splitting and both gross and individual myofiber mineralization. 

The relative absence of fibrosis in FHMD cats up to 2 years of age suggests that the muscle 

enlargement is most likely because of true hypertrophy.12

GRMD Dog

As with DMD and the mdx mouse, the extraocular muscles are largely spared in GRMD.
44,45 Other muscles become involved as a function of age and usage. Muscles that are used 

heavily in utero and early in life, such as the tongue, diaphragm, and limb flexors, are 

acutely necrotic during the neonatal period.44,45 Extensor muscles demonstrate a more 

delayed pattern of involvement, reflecting their greater use in weight bearing. As with the 

mdx mouse, muscles that undergo early necrosis may then regenerate and even hypertrophy. 

In one of the original GRMD dogs studied by our group, the hamstrings, tongue, 

diaphragmatic crura, and esophageal muscularis were enlarged.10

A further study in our laboratory showed that most GRMD pelvic limb muscles atrophy, 

whereas the caudal and cranial sartorius and popliteus hypertrophy.25 Cranial sartorius 

muscle weights were corrected for body weight and endomysial space to determine true 

muscle weights (g/kg) in 3 GRMD age groups (4–10, 13–26, and 33–66 months) and 

grouped normal dogs (6–20 months) (Table 1). Corrected GRMD weights in the younger 

dogs were greater than those of normal dogs, indicating that the cranial sartorius undergoes 

initial true muscle hypertrophy. Values of both older groups were less than those of the 

younger dogs, suggesting that the cranial sartorius muscle atrophies over time, with an 

associated increase in the endomysial space because of deposition of fat and connective 

tissue.
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Our studies of force/torque generated by individual and grouped GRMD muscles are in 

keeping with these pathologic data and findings from mdx mice. We initially evaluated 

tension generated by the peroneus longus muscle.46 Absolute twitch tension and both 

muscle- and body-weight-corrected twitch tension in GRMD dogs were low compared with 

normal littermates at 3 months of age. Tetanic tension was affected similarly. However, 

although absolute values were still reduced at 6 months, twitch and tetanic tension corrected 

for either muscle or body weight was not statistically different (Fig. 3), suggesting that the 

peroneus longus recovers from an initial period of necrosis. Moving forward, we have 

primarily evaluated force/torque generated by tarsal joint flexors (including the cranial 

tibialis and peroneus longus) and extensors (including the gastrocnemius and superficial 

digital flexor that is analogous to the soleus).47 For these measurements, the peroneal and 

tibial nerves are stimulated percutaneously so that the paw pulls (peroneal nerve, flexion) or 

pushes against (tibial nerve, extension) a lever interfaced with a force transducer. In our 

initial study, force values were measured at 3, 4.5, 6, and 12 months of age. While absolute 

and body-weight-corrected GRMD twitch and tetanic force values were lower than normal 

at all ages, tarsal flexion and extension were differentially affected (Fig. 4). Flexion values 

were especially low at 3 months, whereas extension was affected more at later ages.

We have used tetanic tarsal joint force measurements to evaluate effects of prednisone (2 

mg/kg) given to GRMD dogs for a 4-month period beginning at 2 months of age.48 Tarsal 

extension force increased in treated versus control GRMD dogs, whereas flexion 

paradoxically decreased. In light of our force studies, we assumed that the paradoxical 

decline in flexion occurred because prednisone attenuated early necrosis in muscles such as 

the peroneus longus and cranial tibialis that would have otherwise led to functional 

hypertrophy.

Contraction kinetics in GRMD dogs for both the peroneus longus46 and grouped tarsal joint 

flexors and extensors47 also differed from normal. Post-tetanic potentiation for the peroneus 

longus was more pronounced in GRMD versus normal dogs at both 3 and 6 months. Twitch 

contraction and relaxation times were dramatically prolonged, and there was concomitant 

sustained electrical activity at or before 6 months of age in some severely affected dogs. For 

the grouped muscles, the twitch-tetany ratio was generally lower, post-tetanic potentiation 

for flexion values was less marked, and extension relaxation and contraction times were 

longer. As discussed further later, prolonged relaxation times with underlying sustained 

electrical activity and more generalized complex repetitive discharges could play a role in 

muscle hypertrophy.

POSTURAL INSTABILITY AND CONTRACTURES

Comparative aspects of gait abnormalities, postural changes, and joint contractures in 

humans and animal models must be interpreted in light of fundamental differences in 

conformation, some of which arise because of quadrupedal versus bipedal locomotion. As an 

example, the line of the pelvis from the tuber ischium to the wing of the ilium extends in a 

vertical plane, perpendicular to the walking surface, in humans but is oriented more 

horizontally, largely parallel to the ground, in quadrupeds. Thus, changes in pelvic 

orientation innately differ among patients with DMD, mdx mice, and GRMD dogs. In some 
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cases, muscle weakness in DMD causes the posture to shift toward one normally assumed 

by quadrupeds and vice versa. The pelvis tilts anteriorly toward a more horizontal position to 

maintain postural stability in DMD49 but shifts toward a vertical plane in GRMD dogs50 (see 

later). Another factor relates to whether the leg/limb stance is plantigrade (humans and mice) 

or digitigrade (dogs).51,52 Humans and mice walk on their phalanges, carpal, and tarsal 

bones, whereas dogs normally walk only on their distal and intermediate phalanges (digits). 

With neuromuscular diseases, in general, dogs become more plantigrade in the pelvic limbs,
53,54 adopting a stance more in keeping with that normally used by humans. A third stance, 

termed unguligrade, involves walking only on the tip of the distal digit.52,55 The fact that 

horses have this posture explains use of the term equinus in DMD patients who toe walk.

DMD and BMD

Most DMD natural history studies include measurements of muscle strength, joint 

contractures, and timed function tests. Results from these tests are used to track disease 

progression and offer insight on clinical milestones, such as the loss of ambulation and the 

need for ventilatory support. Contracture and muscle strength scores generally correlate, 

deteriorate synchronously over time, and contribute mutually to postural instability.56,57 As 

discussed later, unequal muscle weakness in DMD precipitates a vicious cycle that can lead 

to debilitating contractures and loss of ambulation (Fig. 5).58

Generally, contractures are caused by inactivity and restricted motion of the affected joint,
59,60 with a subsequent increase of collagen cross-links in periarticular connective tissue.61 

Major causes include forced joint immobilization to stabilize fractures,60 spasticity 

associated with upper motor neuron lesions,62 and primary neuromuscular diseases.63 Joint 

contractures occur more commonly in DMD than other neuromuscular diseases63 and have 

long been recognized as a major factor in disease morbidity. In one review that included 43 

patients with DMD, the ankle (34/43), knee (29/43), hip (29/43), and elbow (28/43) were 

affected most frequently.63 The ankle was also most commonly affected in BMD, occurring 

in 4 of 7 patients. Despite the prominent role that joint contractures play in these 

dystrophies, causative mechanisms are not fully understood. Underlying abnormal 

positioning presumably occurs because of an imbalance of forces acting on the joint, 

because diseased muscles are either disproportionately weakened or shortened by fibrosis. 

Relevant to this review, several studies have assessed the proportional strength of agonist and 

antagonist muscles operating at joints of patients with DMD. Some studies have concluded 

that muscular imbalance contributes to contractures,57,64–66 whereas another found no such 

association.67 Those finding a relationship noted a strong negative correlation between 

extensor muscle weakness and flexor contracture severity in DMD. As opposing extensor 

muscles weakened, flexor contractures worsened. Disproportionate flexor muscle 

hypertrophy would logically exaggerate this process. In a somewhat similar vein, 

contractures occurring because of spasticity also are magnified by enhanced flexor muscle 

activity.62

Postural instability and leg contractures are of special interest in DMD because of their role 

in the loss of ambulation. The relative sequence and proportional involvement of flexor and 

extensor muscles is critical. Early weakness of the hip (gluteus maximus) and knee 
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(quadriceps femoris) extensors necessitates postural changes to maintain ambulation. 

Increased anterior pelvic tilt and lumbar lordosis are adopted to shift the center of gravity 

forward of the knee and behind the hip, respectively.49 Johnson68 suggested that this posture 

allows passive ligamentous stabilization of these joints. Of comparative interest, a somewhat 

analogous system of ligamentous support (stay apparatus) allows horses to remain standing 

while sleeping.69 Relative preservation of hip (including the sartorius) and knee (hamstrings) 

flexors in DMD creates destabilizing torque forces and also contributes to contractures at 

both levels.70 Toe walking is adopted to stabilize the knee and later plays a role in the 

development of ankle equinus.71 Plantar flexor contractures associated with equinus are 

aggravated by unbalanced muscle activity at the ankle, with selective weakening of the 

tibialis anterior and peroneus longus muscles and relative sparing of the triceps surae 

(collectively, the 2 heads of the gastrocnemius and soleus).57,71 One investigator 

characterized this as a return to the infantile digitigrade pattern of walking, perhaps in an 

effort to put less stress on the weakened tibialis anterior muscle.72 These contractures may 

initially have beneficial effects because tension in the gastrocnemius muscles pulls on the 

femoral condyles, extending the knee.73 Iliotibial band (hip) contractures also extend the 

knee, providing additional stability. However, in advanced stages, heel cord and iliotibial 

band tightening destabilize gait, prompting the development of various corrective surgical 

procedures.65,74 Scoliosis is typically a late complication of DMD, occurring in boys after 

they have gone into wheelchairs, with the side of convexity almost always toward the 

dominant hand.75 The developing spine is thought to become deformed by excessive 

unbalanced forces from the dominant extremity. Scoliosis restricts expansion of the chest 

and tracks closely with respiratory disease.76 Importantly, this biomechanical interplay in 

scoliosis shows that application of disproportionate (asymmetric) muscle force to the 

developing skeleton can cause bony maldevelopment with clinical consequences.

As discussed earlier, mechanisms contributing to preferential calf and other flexor muscle 

sparing or hypertrophy, starting with whether there is an actual increase in contractile tissue, 

are especially intriguing. If one accepts that these muscles undergo true hypertrophy in at 

least some patients, the timing and functionality of the muscle enlargement and whether it is 

playing a beneficial or detrimental role become critical. This would be particularly relevant 

with treatments, such as myostatin inhibition, that are intended to increase muscle mass (see 

later).

The mdx Mouse

Kyphosis analogous to scoliosis in DMD has been characterized in the mdx mouse. Just as 

with DMD, there is an association between spinal deformity and respiratory compromise. 

Mechanisms to account for kyphosis have not been defined, although Laws and Hoey77 

speculated that muscle hypertrophy could contribute. In a separate proof-of-concept study, 

this same group evaluated the potential for intramuscular injection of antisense 

oligonucleotides into paraspinal muscles to ameliorate kyphosis.78 The treated group had 

less thoracic deformity than controls, but other outcome parameters did not differ between 

the groups. Weights of the latissimus dorsi, diaphragm, and intercostals muscles were 

increased in mdx mice in both treated and control mice. Force generation by these muscles 

was not increased, and histologic features were more in keeping with muscle degeneration 
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and fibrosis than true hypertrophy. Thus, although not the central focus of this study, there 

was not a definite link between muscle hypertrophy and kyphosis.

Contractures of the tarsal (talocrural, ankle) joint have recently been characterized in the 

mdx mouse.79 As discussed earlier, both mice and humans have a plantigrade stance, so 

there could be analogous operative forces. In keeping with findings from DMD, mdx mice 

had plantar flexor contractures, evidenced by decreased dorsiflexion and range of motion. 

There was an associated increase in gastrocnemius wet muscle weight, and torque generated 

by the dorsiflexors was proportionally lower than that of the gastrocnemius muscles.

FHMD

Because of their muscle hypertrophy, FHMD cats have a stiff stilted gait with their hocks 

adducted.12,13 They adopt a “falling down technique” to move into lateral recumbency and 

are unable to turn their heads and groom.12 FHMD cats also do not close their mouths 

completely, presumably because of glossal hypertrophy,12,13 which interferes with eating 

and swallowing, ultimately causing dehydration and azotemia.13 The esophagus may have 

decreased contractility13 and can be constricted by the hypertrophied diaphragm,12,13 

resulting in regurgitation. A syndrome similar to malignant hyperthermia has been 

characterized in several cats that died during stress or anesthesia (see discussion linking 

calcium homeostasis in this condition and muscle hypertrophy).42,80

GRMD Dog

Gait and postural changes in GRMD must be considered in the context of marked 

phenotypic variation among affected dogs.81,82 Severely affected dogs may die within the 

first 10 days of life,81 whereas others live well into adulthood.83 By 6 weeks of age, GRMD 

dogs advance their pelvic limbs simultaneously (bunny hopping) and subsequently exhibit a 

progressively more stilted gait.81 Those with a severe phenotype develop a characteristic 

plantigrade stance between 3 and 6 months, as evidenced by hyperextension of the carpus 

and hyperflexion of the tarsus.81,84 Over this same period, the elbows become abducted and 

the hocks are adducted. Concomitantly, the pelvic limbs shift forward, as the tuber ischium 

of the pelvis moves ventrally and cranially. In severe cases, the line of the pelvis may be 

oriented in an essentially vertical plane, perpendicular to the walking surface (Fig. 6).50 

Some of these dogs lose the ability to walk and must be euthanized.

Beyond the initial 6 months of life, clinical signs in GRMD dogs tend to stabilize and further 

adaptive changes help to maintain postural stability. With both video gait analysis85 and 

accelerometry,86 GRMD dogs walk more slowly and their stride length is decreased. 

Accelerometry demonstrated a redistribution of power at gait, with a decrease in the 

craniocaudal plane and a compensatory increase mediolaterally to maintain balance.86 On 

video gait analysis, older, generally mildly affected dogs had a more upright stance, with 

relatively greater extension of the stifle and lesser flexion of the tarsus.85 This posture 

presumably is adopted in an effort to stabilize their stance in the face of quadriceps 

weakness. In our experience, GRMD dogs rarely become nonambulatory after the initial 

critical period of destabilization at 3 to 6 months of age. Some have a normal life span; we 

currently have a 12-year-old GRMD dog with a remarkably mild phenotype in our colony.
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One of our earlier studies showed that 6-month-old GRMD dogs positioned in dorsal 

recumbency for force measurements have abnormally acute (contracted) tarsal joint angles.
46,84 Other investigators have subsequently described methods to measure joint angles at 

maximal flexion and extension in normal dogs.87,88 We now use the method suggested by 

Jaegger and colleagues87 to measure pelvic limb joint angles and range of motion. By 6 

months of age, GRMD dogs tend to have more restricted maximal flexion of the hip joint, 

increased maximal stifle extension, and more acute maximal tarsal flexion. To objectively 

characterize the cranioventral shift of the pelvis, we also measure the angle formed by 2 

lines extending cranially from the tuber ischium, one drawn parallel to the lumbar spine and 

the other extending to the midpoint of the tuber coxae. This angle is larger in dogs with 

GRMD than in normal dogs at 6 months of age.

Mechanisms contributing to postural and joint angle changes in GRMD dogs have not been 

defined. The cranioventral pelvic shift may be an adaptive response, as affected dogs move 

their pelvic limbs under the torso to maintain balance. The resultant posture is similar to that 

achieved by boys with DMD when they shift their pelvis forward.49 Alternatively, 

unbalanced hip flexor and extensor strength might play a role. Relative preservation of the 

hamstring muscles in GRMD dogs could pull the tuber ischium ventrally and also contribute 

to decreased maximal hip flexion values. As discussed earlier, considering the role that the 

sartorius and iliotibial band play in hip flexor contractures in DMD,74 true hypertrophy of 

the cranial sartorius could be playing an analogous role in GRMD. In support of a 

relationship, we have previously shown that cranial sartorius circumference correlates 

negatively with tarsal joint angle in affected dogs.25 Still, it is unclear whether there is truly 

a cause-and-effect relationship. The hypertrophied cranial sartorius could actively pull the 

stifle joint forward, with the tarsus passively following to assume a plantigrade position. On 

the other hand, cranial sartorius hypertrophy and plantigrade stance might have common 

root causes but no direct functional relationship. In any case, cranial sartorius hypertrophy or 

contracture does seem to affect the developing pelvis in young GRMD dogs, as the ilial 

wings from which it originates flare laterally (see Fig. 6),50 presumably in response to 

unopposed torque. This is somewhat analogous to scoliosis resulting from unbalanced force 

applied by the dominant arm in boys with DMD75 and emphasizes the potential for 

disproportionate muscle size and strength to cause skeletal deformity.

Local imbalance of agonist and antagonist muscles could also be playing a role in postural 

changes at the tarsal and carpal joints of GRMD dogs. Consistent with findings in DMD, we 

have shown that GRMD extensor and flexor muscles operating at the tarsal joint are 

differentially affected. Flexion values are especially low at 3 months, whereas extension is 

affected more at later ages (see Fig. 4).47 At 6 months of age, the tarsal extension-flexion 

force ratio correlates positively with tarsal joint angle, which is to say that dogs with 

stronger extensors have larger joint angles and a less severe phenotype.89 We have not 

systematically studied joint angles in the thoracic limb and can only speculate on 

mechanisms involved in carpal hyperextension. It seems unlikely that a reverse pattern of 

muscle involvement, whereby extensor muscles are relatively preserved, is responsible. 

Importantly, plantigrade stance is a nonspecific clinical sign in dogs and cats with 

neuromuscular disease,53,54 independent of underlying cranial sartorius hypertrophy. This 

suggests that the pelvic limb plantigrade posture, coupled with hyperextension of the carpus 
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(so-called palmigrade stance),53 may simply reflect distal muscle weakness. The pivot point 

would logically differ between the carpus (hyperextension) and tarsus (hyperflexion) to keep 

the footpads in contact with the walking surface.

Spinal curvature is not a major feature of GRMD. Lumbar kyphosis may occur in tandem 

with the cranioventral shift of the pelvis; lordosis can be seen more chronically.81 The 

lordotic posture could occur because of unequal application of force on the developing 

spine, with relative restriction of vertebral growth dorsally (posteriorly) or exaggerated 

growth ventrally (anteriorly).90,91 Relative preservation of the psoas major muscle in GRMD 

dogs25 might exert disproportionate force on the ventral lumbar spine, contributing to both 

hip flexor contractures and lordosis.

MECHANISMS CONTRIBUTING TO MUSCLE HYPERTROPHY

Differences in the severity, distribution, and nature of pathologic lesions leading to muscle 

enlargement in DMD and the 3 animal models should offer clues on mechanisms 

contributing to muscle hypertrophy in dystrophin deficiency. In the mdx mouse and GRMD 

cranial sartorius, muscle hypertrophy follows early necrosis. We believe that a convergence 

of factors driving muscle regeneration and differentiation leads to a disordered or overly 

robust proliferative response in GRMD. Although it is tempting to speculate on a similar 

mechanism in DMD and FHMD, no direct evidence links early necrosis and hypertrophy in 

these diseases. The relative lack of fatty infiltration in muscles of the mammalian models 

raises additional mechanistic questions relating to the efficiency of muscle regeneration 

among species and their propensity for fatty change secondary to muscle injury. These 

questions are generally beyond the scope of this article. Here, we review central concepts 

and suggest potential drivers for muscle hypertrophy in light of findings in affected animals.

Muscle mass can expand through either increased cell number (hyperplasia) or size 

(hypertrophy), with proliferation playing a greater role in developing muscle92 and 

hypertrophy being more important in maturity.93 Both myofiber hyperplasia and 

hypertrophy are thought to contribute to increased muscle size in DMD and the animal 

models.6,7,25,31,43 Muscle size is regulated by a complex set of genes that establish a balance 

between forces that would otherwise lead to either atrophy or hypertrophy.94 With regard to 

muscle mass in DMD, much attention has focused on insulin-like growth factor 1, which is 

known to promote muscle hypertrophy by activating the phosphatidylinositol 3 kinase/Akt 

pathway and, in turn, mTOR and further downstream targets.95 Activation of the Akt-mTOR 

pathway is associated with muscle hypertrophy in the mdx mouse, and Akt expression is 

increased in DMD muscles.96 These findings led the investigators to conclude that “vigorous 

activation of hypertrophic processes during prenecrotic stages of disease might reduce the 

severity of pathology or extend the prenecrotic stage of disease.”96

Many other factors could be driving or supporting muscle hypertrophy. Anderson and 

colleagues97 found increased binding activity of basic fibroblast growth factor (bFGF) in 

mdx mouse versus DMD and GRMD muscle, suggesting that its expression might augment 

the regenerative response by recruiting more muscle precursor cells. However, in a 

subsequent study, administration of bFGF did not enhance muscle regeneration in mdx mice.
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98 Transforming growth factor β2 (TGF-β2) levels are increased in both newly formed 

myotubes of regenerating muscle99 and in muscle samples from patients with DMD.100 The 

glycoprotein osteopontin (OPN; secreted phosphoprotein 1) functions as a proinflammatory/

fibrotic cytokine in mdx mice101 and serves as a genetic modifier in DMD.102 Importantly, 

OPN also promotes myogenesis103 and so could play a dual role in transitioning muscle 

from an inflamed to regenerative state. We have found increased levels of both TGF-β2 and 

OPN in GRMD muscles; moreover, TGF-β2 tends to track positively with the degree of 

cranial sartorius hypertrophy (Nghiem and colleagues, unpublished data, 2011).

The complex repetitive discharges seen on electromyography in the 3 dystrophin-deficient 

animal models10,13,104 and, to a lesser extent, in DMD105 offer an additional mechanism to 

account for muscle hypertrophy. Sustained electrical activity (myotonia) and muscle 

contractions associated with chloride and sodium channelopathies can lead to dramatic 

muscle hypertrophy in the nondystrophic myotonias.106,107 Spontaneous discharges in 

dystrophin-deficient muscle may occur because of altered ion currents across the damaged 

muscle cell membrane, with an associated shift in the resting membrane potential. Sustained 

muscle contraction would presumably augment muscle size, just as it does in myotonia. A 

positive correlation was observed between Akt pathway activity and muscle hypertrophy in a 

group of patients with myotonic dystrophy.108

While correlative data are largely circumstantial, abnormal calcium homeostasis could 

predispose to both muscle hypertrophy and susceptibility to malignant hyperthermia–like 

syndromes. Myofiber calcium levels are increased in DMD109 and each of the 3 mammalian 

models.13,110,111 Increased cytosolic levels of calcium also occur in malignant hyperthermia 

caused by mutations in the ryanodine receptor gene.112 Myofiber hypertrophy is a predictor 

of susceptibility to malignant hyperthermia in humans113 and occurs in susceptible dogs.114 

Although patients with DMD are not at increased risk for malignant hyperthermia itself, they 

do occasionally develop a similar syndrome when anesthetized with volatile gases.115 

Among the dystrophin-deficient animal models, cats are particularly prone to a malignant 

hyperthermia–like syndrome80 and demonstrate the most striking muscle hypertrophy.12,13 

We have seen a similar metabolic syndrome in GRMD dogs anesthetized with isoflurane and 

sevoflurane. In addition, changes in contraction kinetics of the GRMD peroneus longus 

muscle occur as it is increasing in size and are compatible with those seen with a delay in 

calcium sequestration.46

MYOSTATIN INHIBITION IN MUSCLE DISEASE

Beyond the incalculable emotional trauma for patients with DMD and their families, society 

pays a huge price. Yearly health care costs exceed $30,000 per patient with DMD, 10 to 20 

times those of other hospitalized groups.116 In Australia, overall annual costs for each 

patient, including personal care and lost productivity, have been estimated to be $126,000 

and yearly costs due to muscular dystrophy have been placed at approximately $1.5 billion.
117 These figures offer a window into the broader societal impact of more common 

degenerative muscle disorders such as sarcopenia and cancer cachexia. Sarcopenia incidence 

increases over life, with approximately 15% of women and 30% of men affected at age 80 
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years.118 Direct health care costs attributable to sarcopenia in the United States approached 

$20 billion in 2000.119

The collective incidence and cost of health care for the muscular dystrophies and other 

muscle wasting disorders is a major driver for the pharmaceutical industry.120,121 One 

strategy for promoting muscle regeneration involves inhibiting myostatin (Mstn; growth/

differentiation factor 8), a negative regulator of muscle growth. Humans,122 cattle,123 sheep,
124 and dogs125 with myostatin mutations have dramatic muscle hypertrophy. Dystrophin-

deficient mdx mice in which myostatin is knocked out (Mstn−/−)126 or inhibited 

postnatally127 also have a less severe phenotype. Conversely, results from other dystrophic 

murine models in which myostatin was knocked out have varied,128,129 with some mice 

showing increased morbidity.130 There are questions about potential senescence of 

myostatin-deficient cells that have undergone multiple divisions.129 Moreover, abnormalities 

have been identified in muscle tendons from Mstn−/− mice.131

Although genetically engineered mice have provided an extremely powerful tool to study the 

molecular pathogenesis of disease, results do not necessarily extrapolate to humans, 

presumably because of differences between murine and human size and physiology.132 

These shortcomings are partially obviated with canine models, which have been used 

extensively to study disease pathogenesis and treatment efficacy.133,134 This trend toward 

the use of canine genetic models such as GRMD to study human disease will likely 

accelerate with the recent sequencing of the canine genome.135 Thus, ideally, results from 

myostatin-deficient mdx mice should be corroborated in dystrophic dogs in which the gene 

has been knocked out. Unfortunately, transgenic technology in the dog is very cumbersome 

and inefficient, essentially precluding use of this approach.136 With this in mind, we have 

developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs 

with myostatin-heterozygous (Mstn+/−) whippets.

A total of 4 dystrophic Mstn+/− GRippets and 3 dystrophic Mstn wild-type (Mstn+/+) dogs 

from 2 litters have been evaluated using various phenotypic tests at 6 to 8 months of age. 

Rather than showing improvement, the dystrophic Mstn+/− GRippets were more clinically 

affected than their dystrophic Mstn+/+ littermates, apparently because of disproportionate 

enlargement of certain muscles. In particular, unequal hypertrophy of proximal pelvic limb 

muscles, as determined by MRI (Fig. 7 and Table 2) and necropsy, seemed to exaggerate 

postural abnormalities. Gross cranial sartorius muscle hypertrophy was particularly 

prominent. In general, atrophy or hypertrophy of individual muscles in dystrophic Mstn+/+ 

dogs was exaggerated in the dystrophic Mstn+/− GRippets. Some dystrophic Mstn+/− 

GRippets had commensurate, more pronounced atrophy/hypoplasia of the quadriceps 

femoris muscle.

Data from these GRippet dogs indicate that mechanisms contributing to selective muscle 

hypertrophy or atrophy/hypoplasia in dystrophin-deficient muscle may be exaggerated by 

partial loss of myostatin. Clearly, findings from a genetic model in which myostatin is 

inhibited from conception will not necessarily predict the outcome of staged postnatal 

treatments. However, at the very least, our results imply that differential effects of myostatin 
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inhibition on muscle could have deleterious consequences, in keeping with various other 

findings reviewed in this article.

SUMMARY

Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in 

humans and syndromes in mice (mdx mouse), dogs (golden retriever muscular dystrophy 

and other canine mutations), and cats (feline hypertrophic muscular dystrophy). While 

affected humans and dogs have progressive disease that leads primarily to muscle atrophy, 

certain muscles undergo paradoxical hypertrophy. Mdx mice progress through an initial 

phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. 

In both humans and animals, muscles are not uniformly affected, with some atrophying as 

others enlarge. Disproportionate involvement of flexor and extensor muscles acting at joints 

can exaggerate contractures. Muscle hypertrophy in humans has generally been attributed to 

deposition of fat and connective tissue (pseudohypertrophy), but recent imaging studies 

suggest that increased muscle mass (true hypertrophy) also occurs. True hypertrophy plays a 

more prominent role than fibrosis and fatty deposition in the animal models. Various 

mechanisms could potentially account for increased muscle mass and, thereby, be 

manipulated therapeutically. However, for maximal benefit, treatments should uniformly 

increase mass or preferentially improve strength of clinically-important muscles. Treatments 

that result in disproportionate muscle enlargement may exaggerate postural instability and 

joint contractures. These deleterious consequences of muscle hypertrophy should be 

considered when developing treatments for muscular dystrophy and other muscle wasting 

disorders.
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Fig. 1. 
Nine-year-old boy with DMD demonstrating characteristic calf hypertrophy. (Courtesy of 
James F. Howard Jr.)
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Fig. 2. 
T1- and T2-weighted magnetic resonance images of the proximal leg of a boy with DMD in 

the anteroposterior (top) and transverse (bottom) planes. The transverse image is at the level 

of the midfemur. Most muscles have been partially to near totally replaced with signal-

intense material compatible with fat. Note that the subcutaneous fat has comparable signal 

intensity in both T1- and T2-weighted images. In contrast to the properties of most muscles 

seen, the sartorius and gracilis muscles (arrows) are largely unaffected.
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Fig. 3. 
Tetanic force corrected for body weight (g/kg) generated by the peroneus longus muscle of 

normal and GRMD dogs at 3 and 6 months of age. Values for the GRMD dogs are lower 

(P<.05)* at 3 months. However, although body-weight-corrected force is proportionally 

lower in normal dogs at 6 months, it has increased in GRMD dogs, such that values for the 2 

groups are no longer significantly different. (Data from Kornegay JN, Sharp NJ, Bogan DJ, 

et al. Contraction tension and kinetics of the peroneus longus muscle in golden retriever 

muscular dystrophy. J Neurol Sci 1994;123:100–7.)
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Fig. 4. 
Tetanic force, corrected for body weight (N/kg), generated by tarsal joint flexors (left) and 

extensors (right) from normal dogs and GRMD dogs at 3, 4.5, 6, and 12 months of age. 

Values for GRMD dogs are lower (P<.01 for all) than those of normal dogs at all ages. 

However, the differential between GRMD and normal dogs differs. Flexion values are 

especially low at 3 months, whereas extension is affected more at later ages. (From 
Kornegay JN, Bogan DJ, Bogan JR, et al. Contraction force generated by tibiotarsal joint 

flexion and extension in dogs with golden retriever muscular dystrophy. J Neurol Sci 

1999;166:119; with permission.)
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Fig. 5. 
Vicious cycle of postural instability that leads to loss of ambulation in patients with DMD. 

Uneven weakness leads to imbalance and compensatory postural changes that ultimately 

result in shortening of muscles and contractures. The process is self-perpetuating. (Modified 
from Roy L, Gibson DA. Pseudohypertrophic muscular dystrophy and its surgical 

management: review of 30 patients. Can J Surg 1970;13:14; with permission.)
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Fig. 6. 
Lateral (A) and ventrodorsal (B) radiographs of the pelvis of a 4-year-old GRMD dog and a 

normal dog (C and D) for comparison. Note the marked vertical tilt of the pelvis in the 

GRMD dog (A), so that the angle formed by the wing of the ilium and lumbar spine is much 

more acute at approximately 90° (angle marked by lines within the red circle). The wings of 

the ilia flare laterally in the GRMD dog (red circle in B). (From Brumitt JW, Essman SC, 

Kornegay JN, et al. Radiographic features of Golden Retriever muscular dystrophy. Vet 

Radiol Ultrasound 2006;47:578; with permission.)
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Fig. 7. 
T2-weighted magnetic resonance images with fat signal suppression (FS) of pelvic limb 

muscles at midthigh from 3 crossbred GRMD and myostatin-heterozygous (Mstn+/−) dogs 

from the first litter. Note the proportional enlargement of the sartorius and hamstring 

muscles and the associated atrophy/hypoplasia of the quadriceps of the dystrophic Mstn+/+ 

dog, Flash, relative to the normal dog, Racer, and the even more dramatic differential size of 

these muscles in the dystrophic Mstn+/− dog, Dash (also see volumetric measurements from 

these sections in Table 2). Segmentation was done using ITK-SNAP (http://

www.itksnap.org/pmwiki/pmwiki.php).137
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Table 1

Morphometric GRMD vs. normal canine cranial sartorius histopathologic data (mean ± SD)

Pathologic Lesion Normal (6–20 mo; n = 12)

GRMD

Group 1 Group 2 Group 3

4–10 mo; n = 15 13–26 mo; n = 4 33–66 mo; n = 4

Corrected muscle weight (g/kg)a 1.3075 ± 0.2079 3.0573 ± 0.7635 2.4725 ± 0.7556 1.4650 ± 0.6575

Percentage of endomysial spaceb 2.8083 ± 1.3468 27.1857 ± 15.3869 44.1275 ± 14.6462 58.9100 ± 14.2060

True muscle weight (g/kg)c 1.2699 ± 0.1966 2.2063 ± 0.6884 1.3758 ± 0.5078 0.5720 ± 0.2423

Mean fiber diameter (μm)d 42.1658 ± 4.3542 57.4980 ± 11.7419 63.1295 ± 13.3033 47.0850 ± 17.7029

a
Normal<GRMD, Group 1 (P<.05); GRMD Group 1>GRMD Group 3 (P<.05).

b
Normal<GRMD Groups 1–3 (all P<.05).

c
Normal<GRMD, Group 1 (P<.001); GRMD Group 1>GRMD Groups 2 (P<.05) and 3 (P<.001).

d
Normal<GRMD Groups 1 and 2; P<.01 for Group 1 and P<.05 for Group 2.

Data from Kornegay JN, Cundiff DD, Bogan DJ, et al. The cranial sartorius muscle undergoes true hypertrophy in dogs with golden retriever 
muscular dystrophy. Neuromuscul Disord 2003;13:493–500.
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