503 research outputs found

    Nomenclature for alleles of the thiopurine methyltransferase gene

    Get PDF
    The drug-metabolizing enzyme thiopurine methyltransferase (TPMT) has become one of the best examples of pharmacogenomics to be translated into routine clinical practice. TPMT metabolizes the thiopurines 6-mercaptopurine, 6-thioguanine, and azathioprine, drugs that are widely used for treatment of acute leukemias, inflammatory bowel diseases, and other disorders of immune regulation. Since the discovery of genetic polymorphisms in the TPMT gene, many sequence variants that cause a decreased enzyme activity have been identified and characterized. Increasingly, to optimize dose, pretreatment determination of TPMT status before commencing thiopurine therapy is now routine in many countries. Novel TPMT sequence variants are currently numbered sequentially using PubMed as a source of information; however, this has caused some problems as exemplified by two instances in which authors' articles appeared on PubMed at the same time, resulting in the same allele numbers given to different polymorphisms. Hence, there is an urgent need to establish an order and consensus to the numbering of known and novel TPMT sequence variants. To address this problem, a TPMT nomenclature committee was formed in 2010, to define the nomenclature and numbering of novel variants for the TPMT gene. A website (http://www.imh.liu.se/tpmtalleles) serves as a platform for this work. Researchers are encouraged to submit novel TPMT alleles to the committee for designation and reservation of unique allele numbers. The committee has decided to renumber two alleles: nucleotide position 106 (G>A) from TPMT*24 to TPMT*30 and position 611 (T>C, rs79901429) from TPMT*28 to TPMT*31. Nomenclature for all other known alleles remains unchanged

    The Membrane Transporter OAT7 (SLC22A9) Is Not a Susceptibility Factor for Osteoporosis in Europeans

    Get PDF
    Bone production, maintenance, and modeling are a well-balanced process involving mineralization by osteoblasts and resorption by osteoclasts. Sex steroid hormones, including their conjugated forms, contribute majorly to maintaining this balance. Recently, variants in the SLC22A9 gene have been associated with osteoporosis in Korean females. We had recently shown that SLC22A9, encoding organic anion transporter 7 (OAT7), is an uptake transporter of estrone sulfate and identified several genetic variants in Europeans leading to functional consequences in vitro. We therefore hypothesized that SLC22A9 genetic variants may contribute to the pathophysiology of osteoporosis in Europeans. To test this hypothesis, we examined the associations of SLC22A9 variants with bone quality, fractures, and bone turnover markers. We genotyped SLC22A9 variants in 5,701 (2,930 female) subjects (age range, 20–93 years) extracted from the population-based Study of Health in Pomerania (SHIP and SHIP-TREND) covered by the Illumina Infinium HumanExome BeadChip version v1.0 (Exome Chip). Descriptive data (e.g., history of fractures), ultrasonography of the calcaneus, as well as serum concentrations of carboxy-terminal telopeptide of type I collagen, amino-terminal propeptide of type I procollagen, and vitamin D were determined. Comprehensive statistical analyses revealed no association between low-frequency and rare SLC22A9 variants and bone quality, fractures, and bone turnover markers. Our results indicate that single genetic SLC22A9 variants do not have a major impact on osteoporosis risk prediction in Europeans, yet findings need to be replicated in larger-scale studies

    PXR variants and artemisinin use in vietnamese subjects: frequency distribution and impact on the interindividual variability of CYP3A induction by artemisinin

    Get PDF
    Artemisinins induce drug metabolism through the activation of the pregnane X receptor (PXR) in vitro. Here, we report the re-sequencing and genotyping of PXR variants in 75 Vietnamese individuals previously characterized for CYP3A enzyme activity after artemisinin exposure. We identified a total of 31 PXR variants, including 5 novel single nucleotide polymorphisms (SNPs), and we identified significantly different allele frequencies relative to other ethnic groups. A trend of significance was observed between the level of CYP3A4 induction by artemisinin and two PXR variants, the 8118C -> T (Y328Y) and 10719A -> G variants.Styrelsen for Internationellt Utvecklingssamarbete (SIDA), Sweden [SWE-2009-165]; Karolinska Institutet Fond; ICEEPHA (Tubingen-Stuttgart, Germany) [2009-10-0-0]; Federal Ministry for Education and Research (BMBF) (Berlin, Germany) [03 IS 2061C]; DFG [KE 1629/1-1]; Robert Bosch Foundation, Stuttgart, Germany; Fundacao para a Ciencia e Tecnologia, Ministerio da Ciencia e Ensino Superior, Portugal; European and Developing Countries Clinical Trials Partnership (EDCTP)info:eu-repo/semantics/publishedVersio

    Hypertonicity-affected genes are differentially expressed in clear cell renal cell carcinoma and correlate with cancer-specific survival

    Get PDF
    The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues that determine segment-specific gene expression patterns are poorly understood. We recently showed that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC (ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436) in univariate (HR = 4.1; 95% CI: 2.78-6.07; p = 4.39 × 10(-13)), and multivariate analyses including primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10(-5)). The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29; 95% CI = 1.05-1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by hypertonicity. The innovation of our novel gene signature is that these genes are physiologically regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy

    Stereotactic radiotherapy in the treatment of brain metastases

    Get PDF
    This thematic review is part of a larger, comparative dosimetric analysis of the evaluation of treatment plans created by different modulated intensity irradiation, which is delivered by means a linear accelerator for the treatment of multiple metastases in the brain. There is currently no consensus as to which method is dosimetrically better. A further study will be aimed at determining the dosimetric advantages of each irradiation technique to introduce additional certainty into the planning process

    Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics

    Get PDF
    Membrane transporters play an essential role in the transport of endogenous and exogenous compounds, and consequently they mediate the uptake, distribution, and excretion of many drugs. The clinical relevance of transporters in drug disposition and their effect in adults have been shown in drug–drug interaction and pharmacogenomic studies. Little is known, however, about the ontogeny of human membrane transporters and their roles in pediatric pharmacotherapy. As they are involved in the transport of endogenous substrates, growth and development may be important determinants of their expression and activity. This review presents an overview of our current knowledge on human membrane transporters in pediatric drug disposition and effect. Existing pharmacokinetic and pharmacogenetic data on membrane substrate drugs frequently used in children are presented and related, where possible, to existing ex vivo data, providing a basis for developmental patterns for individual human membrane transporters. As data for individual transporters are currently still scarce, there is a striking information gap regarding the role of human membrane transporters in drug therapy in children

    Primary extrahepatic alveolar echinococcosis of the lumbar spine and the psoas muscle

    Get PDF
    Alveolar echinococcosis (AE) of human being caused by Echinococcus multilocularis is a rare but important zoonosis especially in tempered zones of middle Europe and Northern America with endemic character in many countries. Due to the long incubation period, various clinical manifestations, critical prognosis, and outcome AE presents a serious and severe disease. The primary focus of infection is usually the liver. Although secondary affection of visceral organs is possible extrahepatic AE is highly uncommon. Moreover, the involvement of bone and muscle presents with an even lower incidence. In the literature numerous cases on hepatic AE have been reported. However, extrahepatic AE involving bones and/or muscles was described very rarely. We report a case of an 80-year-old man with primary extrahepatic alveolar Echinococcosis of the lumbar spine and the psoas muscle. The etiology, diagnosis, differential diagnoses, treatment options and outcome of this rare disease are discussed in context with the current literature

    Prediction of Drug–Drug–Gene Interaction Scenarios of (E)-Clomiphene and Its Metabolites Using Physiologically Based Pharmacokinetic Modeling

    Get PDF
    Clomiphene, a selective estrogen receptor modulator (SERM), has been used for the treatment of anovulation for more than 50 years. However, since (E)-clomiphene ((E)-Clom) and its metabolites are eliminated primarily via Cytochrome P450 (CYP) 2D6 and CYP3A4, exposure can be affected by CYP2D6 polymorphisms and concomitant use with CYP inhibitors. Thus, clomiphene therapy may be susceptible to drug–gene interactions (DGIs), drug–drug interactions (DDIs) and drug–drug–gene interactions (DDGIs). Physiologically based pharmacokinetic (PBPK) modeling is a tool to quantify such DGI and DD(G)I scenarios. This study aimed to develop a whole-body PBPK model of (E)-Clom including three important metabolites to describe and predict DGI and DD(G)I effects. Model performance was evaluated both graphically and by calculating quantitative measures. Here, 90% of predicted Cmax and 80% of AUClast values were within two-fold of the corresponding observed value for DGIs and DD(G)Is with clarithromycin and paroxetine. The model also revealed quantitative contributions of different CYP enzymes to the involved metabolic pathways of (E)-Clom and its metabolites. The developed PBPK model can be employed to assess the exposure of (E)-Clom and its active metabolites in as-yet unexplored DD(G)I scenarios in future studies

    Evaluation of Clinical Risk Factors to Predict High On-Treatment Platelet Reactivity and Outcome in Patients with Stable Coronary Artery Disease (PREDICT-STABLE)

    Get PDF
    Objectives This study was designed to identify the multivariate effect of clinical risk factors on high on-treatment platelet reactivity (HPR) and 12 months major adverse events (MACE) under treatment with aspirin and clopidogrel in patients undergoing non-urgent percutaneous coronary intervention (PCI). Methods 739 consecutive patients with stable coronary artery disease (CAD) undergoing PCI were recruited. On-treatment platelet aggregation was tested by light transmittance aggregometry. Clinical risk factors and MACE during one-year follow-up were recorded. An independent population of 591 patients served as validation cohort. Results Degree of on-treatment platelet aggregation was influenced by different clinical risk factors. In multivariate regression analysis older age, diabetes mellitus, elevated BMI, renal function and left ventricular ejection fraction were independent predictors of HPR. After weighing these variables according to their estimates in multivariate regression model, we developed a score to predict HPR in stable CAD patients undergoing elective PCI (PREDICT-STABLE Score, ranging 0-9). Patients with a high score were significantly more likely to develop MACE within one year of follow-up, 3.4% (score 0-3), 6.3% (score 4-6) and 10.3% (score 7-9); odds ratio 3.23, P=0.02 for score 7-9 vs. 0-3. This association was confirmed in the validation cohort. Conclusions Variability of on-treatment platelet function and associated outcome is mainly influenced by clinical risk variables. Identification of high risk patients (e.g. with high PREDICT-STABLE score) might help to identify risk groups that benefit from more intensified antiplatelet regimen. Additional clinical risk factor assessment rather than isolated platelet function-guided approaches should be investigated in future to evaluate personalized antiplatelet therapy in stable CAD-patients
    corecore