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Artemisinins induce drug metabolism through the activation of the pregnane X receptor (PXR) in vitro. Here, we report the re-
sequencing and genotyping of PXR variants in 75 Vietnamese individuals previously characterized for CYP3A enzyme activity
after artemisinin exposure. We identified a total of 31 PXR variants, including 5 novel single nucleotide polymorphisms (SNPs),
and we identified significantly different allele frequencies relative to other ethnic groups. A trend of significance was observed
between the level of CYP3A4 induction by artemisinin and two PXR variants, the 8118C¡T (Y328Y) and 10719A¡G variants.

Artemisinin combination therapy (ACT) is an integral part of the
global management of malaria (7). In this treatment strategy, an

artemisinin-related compound with a short half-life (t1/2; �0.25 to 4
h) is combined with a more slowly eliminated antimalarial to reduce
recrudescence and to slow the development of resistance (24). Cur-
rently, several ACT formulations, including artesunate-mefloquine,
artemether-lumefantrine, and artesunate-amodiaquine, are used
(27), and a second generation of ACTs is being scheduled for global
launch. These ACTs include dihydroartemisinin-piperaquine (5)
and artesunate-pyronaridine (30).

In vitro studies indicate that artemisinin, arteether, and arte-
mether are effective ligands of the pregnane X receptor (PXR) (4),
a nuclear receptor and a key player in the regulation of the expres-
sion of proteins involved in drug metabolism (e.g., cytochrome
P450s [CYP450s]) and transport (e.g., ABC transporters) (6).
Variability in the expression and function of these proteins may
lead to alterations in the pharmacokinetics of artemisinin deriva-
tives, possibly resulting in pharmacodynamic changes and subse-
quent clinical consequences such as side effects (14).

A previously performed in vivo study including 75 Vietnamese
subjects showed a significant interindividual variation in the de-
gree of artemisinin-driven induction of several CYP450 enzymes,
including CYP3As, the genes which are canonical targets of PXR
(1). In the present work, we built upon this study by hypothesizing
that specific single nucleotide polymorphisms (SNPs) in PXR
might explain the observed interindividual variability in the level
of CYP3A induction. For this purpose, the PXR gene was fully
resequenced in all individuals who participated in the study men-
tioned above, with a focus on the open reading frame (ORF) (mu-
tations in which could lead to proteins with altered activities),
intron-exon boundaries (mutations in which could lead to distur-
bances in the well-documented alternative splicing of PXR), and
the proximal promoter (mutations in which could modulate basal
expression). Additionally, known variants with putative func-
tional consequences located in introns and other regions (e.g., the
3= region) were genotyped by using matrix-assisted laser desorp-
tion ionization–time of flight mass spectrometry (MALDI-TOF

MS) technology. Primers and amplification conditions are listed
in Table S1 in the supplemental material.

In this extensive analysis, a total of 79 polymorphic sites were
scrutinized, and we identified 31 SNPs, 5 of which, to the best of
our knowledge, are documented for the first time: �24910G¡A
and �23925C¡T in the promoter region of PXR, 8582T¡G in
intron 8, and 10098C¡T and 10976G¡A in the 3= untranslated
region (UTR) (Fig. 1). Only three SNPs in the PXR ORF were
observed, and these were the synonymous SNP 8118C¡T
(Y328Y), with a minor allele frequency of 0.26, and two rare non-
synonymous variants, 9683A¡G and 9932C¡G (I403V and
Q426V). The rarity of SNPs in the ORF supports the view that the
stability of the protein sequence is essential for PXR function, and
thus, there has been sufficient selection pressure to reduce genetic
variability during evolution (11, 34).

With the exception of PXR 8055C¡T and 10976G¡A, all
SNPs were in Hardy-Weinberg equilibrium (HWE) (Fisher’s ex-
act test; GraphPad Prism V.4 software [GraphPad, La Jolla, CA]).
Because we excluded genotyping errors by regenotyping using an
independent method, the deviation from HWE may be explained
by the small sample size of our study population or population
admixture, a well-known phenomenon discussed elsewhere (32).

While data on the prevalence of PXR variants in Caucasian and
Japanese individuals are well established, limited data for other
ethnic groups are available. Thus, our study is the first analysis of
the full PXR sequence in a population from a region where malaria
is endemic. Generally, the prevalence data for Vietnamese individ-
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uals are similar to the data on PXR variants in Indians and Asian-
Americans, consistent with the roots of these populations in the
southern Chinese and Thai-Indonesian populations (Fig. 2) (12,
25). However, of note, the prevalence of the PXR variant
10331A¡G among Vietnamese individuals is significantly differ-
ent from that among Chinese (P � 0.004) and Malay (P � 0.001)
populations (25). Moreover, the frequency distribution of the
10331A¡G variant is substantially different from that in Cauca-
sian populations (P � 0.0001 to 0.062) (3, 21). The prevalence of

the �4356T¡C variant in our cohort was not different from the
frequency in a Caucasian population (P � 0.881) (19). In contrast,
the prevalence of the 7635A¡G variant in Vietnamese individuals
was significantly different from the prevalences in all previously
described populations (P � 0.0001 to 0.01), except for Asian-
Americans, Indians, and, despite geographic distance, Scandina-
vians (13, 16, 25). The same observation was made for the
10483T¡C SNP, for which there were significantly different fre-
quency distributions for all other described populations (P �

FIG 1 Genomic structure of the PXR gene. All single nucleotide polymorphisms identified in this study and their minor allelic frequencies are annotated. The
arrows denote the position of the sequencing primers, and the symbol denotes the newly identified SNPs.

FIG 2 World distribution of PXR SNPs with a frequency of �0.10 in the Vietnamese population (2, 3, 8, 10, 13, 16, 18–23, 25, 26, 28, 29, 33, 34).
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TABLE 1 Genotyping data of PXR in Vietnamese individuals treated with 500 mg artemisinin orally and associations with CYP3A activity induction

Mutation(s) by positiona nb Genotype
Genotypic frequency
(95% CI)c

Mean (�SD) CYP3A
activity inductiond

Fold change
(95% CI)e

Unadjusted P
(Holm-adjusted P)f

�25913C¡T, �25385C¡T,
�24381A¡C

14 wt/wt 0.57 (0.32–0.79) 2.76 (0.83) 1.1 (0.81–1.51) 0.543 (1)
wt/mut 0.36 (0.16–0.61) 2.82 (1.32)
mut/mut 0.07 (0.00–0.33) 3.74

�23913T¡G 10 T/T 0.50 (0.24–0.76) 2.56 (1.13) 1.14 (0.8–1.61) 0.471 (1)
T/G 0.40 (0.17–0.69) 3.06 (0.54)
G/G 0.10 (0.00–0.43) 2.62

�14042C¡A 14 C/C 0.29 (0.11–0.55) 2.87 (0.62) 0.94 (0.69–1.28) 0.678 (1)
C/A 0.57 (0.32–0.79) 2.77 (0.74)
A/A 0.14 (0.03–0.41) 3.13 (2.74)

�4356T¡C 14 T/T 0.14 (0.03–0.41) 3.13 (2.74) 1 (0.74–1.34) 0.989 (1)
T/C 0.50 (0.27–0.73) 2.90 (0.70)
C/C 0.36 (0.16–0.61) 2.67 (0.70)

�601A¡G 14 A/A 0.29 (0.11–0.55) 2.77 (0.77) 0.97 (0.71–1.32) 0.845 (1)
A/G 0.57 (0.32–0.79) 2.82 (0.68)
G/G 0.14 (0.03–0.41) 3.13 (2.74)

252A¡G 14 A/A 0.21 (0.07–0.48) 2.34 (1.18) 1.16 (0.87–1.56) 0.312 (1)
A/G 0.58 (0.32–0.79) 3.01 (1.07)
G/G 0.21 (0.07–0.48) 2.93 (0.70)

275A¡G 14 A/A 0.29 (0.11–0.55) 3.03 (1.67) 1.04 (0.78–1.38) 0.788 (1)
A/G 0.50 (0.27–0.73) 2.71 (0.72)
G/G 0.21 (0.07–0.48) 2.93 (0.70)

3015T¡G 13 T/T 0.54 (0.29–0.77) 2.88 (1.31) 1.08 (0.82–1.43) 0.577 (1)
T/G 0.31 (0.12–0.58) 2.94 (0.55)
G/G 0.15 (0.03–0.43) 3.05 (0.60)

7635A¡G 14 A/A 0.07 (0.00–0.33) 2.28 1.09 (0.77–1.56) 0.615 (1)
A/G 0.64 (0.39–0.84) 2.98 (0.67)
G/G 0.29 (0.11–0.55) 2.69 (1.69)

7675C¡T 13 C/C 0.46 (0.23–0.71) 2.91 (1.40) 1.04 (0.68–1.6) 0.848 (1)
C/T 0.54 (0.29–0.77) 2.80 (0.69)
T/T 0 (0.00–0.27)

8055C¡T 14 C/C 0.58 (0.32–0.79) 2.76 (0.67) 0.94 (0.74–1.2) 0.626 (1)
C/T 0.21 (0.07–0.48) 3.22 (0.52)
T/T 0.21 (0.07–0.48) 2.71 (2.07)

8118C¡T 13 C/C 0.54 (0.29–0.77) 3.29 (0.99) 0.69 (0.48–1.01) 0.057 (1)
C/T 0.46 (0.23–0.71) 2.34 (0.88)
T/T 0 (0.00–0.27)

8582T¡G 13 T/T 0.54 (0.29–0.77) 2.85 (1.26) 1.1 (0.72–1.68) 0.666 (1)
T/G 0.46 (0.23–0.71) 2.95 (0.74)
G/G 0 (0.00–0.27)

10058C¡G 14 C/C 0.93 (0.67–1.00) 2.88 (1.02) 0.89 (0.37–2.15) 1 (1)
C/G 0.07 (0.00–0.34) 2.45
G/G 0.00 (0.00–0.25)

10331A¡G 14 A/A 0.14 (0.03–0.41) 2.08 (0.29) 1 (0.72–1.39) 0.995 (1)
A/G 0.29 (0.11–0.55) 3.06 (0.54)
G/G 0.57 (0.33–0.79) 2.94 (1.21)
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�0.001 to 0.0258) (16). Because the 7635A¡G, 10331A¡G, and
10483T¡C variants have been shown to alter CYP3A4 expression
and function (21, 34), the significantly different prevalences of
these variants in Vietnamese individuals compared with those for
individuals of other ethnicities may have consequences for the
metabolism of CYP3A4 substrates.

In addition, we investigated the impact of individual PXR vari-
ants in an artemisinin-exposed subgroup of 14 subjects who are
characterized by higher CYP3A induction levels (Table 1). Al-
though we observed a trend approaching significance between the
10719A (unadjusted P � 0.04) and 8118T alleles (unadjusted P �
0.057) and lower CYP3A induction according to a log-additive
model, these effects did not persist after adjustment for multiple
testing (adjusted P � 1). The use of codominant, dominant, and
recessive models did not result in statistically significant unad-
justed P values (SNPassoc 1.6-0 in R-2.13.0 [www.r-project.org]).
We are aware that the validity of our data is limited by the small
size of our study cohort. Nevertheless, because it has been recently
shown that a synonymous mutation (ABCB1 3435C¡T) can re-
sult in functional consequences, a similar mechanism for the
8118C¡T variant cannot be excluded (15, 17). The 10719A¡G
SNP is located in the 3= UTR region of the PXR gene, an area rich
in microRNA (miRNA) binding sites. However, the initial in silico
analysis did not support the hypothesis that this variant alters a
specific miRNA binding site.

In conclusion, our study results indicate that the frequency
distribution of particular PXR variants in Vietnam, a region where
malaria is endemic, is different from those in other ethnic popu-
lations. Moreover, the associative trend between the PXR
8118C¡T and 10719A¡G variants and the induction of CYP3A
activity via artemisinin warrants further studies. Although only a
mild increase in CYP3A activity in response to artemisinin deriv-
atives has been shown in vivo, the parent drug, artemisinin, leads
to strong induction (approximately 3-fold) and therefore in-
creases the risk of clinically significant drug-drug interaction (1).

This may be of importance, as artemisinin, despite its pharmaco-
logical shortcomings, has been proposed as a valuable component
for future ACT formulations (e.g., in combination with naphtho-
quine and piperaquine) (9, 31).
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