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Abstract: The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of
origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues
that determine segment-specific gene expression patterns are poorly understood. We recently showed
that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed
a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially
expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses
of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC
(ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical
analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436)
in univariate (HR = 4.1; 95% CI: 2.78−6.07; p = 4.39 × 10−13), and multivariate analyses including
primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10−5).
The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29;
95% CI = 1.05–1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using
RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by
hypertonicity. The innovation of our novel gene signature is that these genes are physiologically
regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy.
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1. Introduction

The kidney’s anatomy and histology consists of different renal cell types located at defined parts
of the kidneys, reflected in the complexity of renal function. This is also reflected by the heterogeneity
of renal cell carcinoma (RCC) subtypes [1]. The main subtypes are clear cell (ccRCC), papillary (pRCC)
and chromophobe (chRCC) renal cell carcinoma [2]. Although several targeted therapies are currently
applied, survival rates—especially for metastatic RCC—are still low and innovative treatment strategies
are needed [2].

Comprehensive studies carried out by The Cancer Genome Atlas (TCGA) provided further
insight into the evolution and origin of RCC, for example, by identifying gene signatures that enable
discrimination between the RCC subtypes or define the cell type of origin. Moreover, it was found to
be possible to predict clinical outcome in ccRCC patients based on gene expression similarity to the
proximal tubule of the nephron, which is the presumed origin of ccRCC [3]. Recently, another study
analyzed the impact of different gene expression profiles on RCC ontogeny [1]. The authors were able
to identify gene expression programs that were specific for a distinct nephron segment and were also
present in the corresponding RCC subtypes. Both studies used data based on nephron-specific gene
expression patterns and were able either to improve the prediction of patient outcome or identify
gene expression networks defining the origin of RCC. However, as mentioned by Lindgren et al. [1],
the transcriptional cues that determine segment-specific gene expression patterns are only partly
understood. We have recently shown that the unique hypertonicity in the renal inner medulla regulates
kidney and nephron-specific gene expression [4]. The group of Prof. Ian Frew showed that deletion
of renal expression of the tumor suppressor von Hippel–Lindau (VHL) protein altered the urine
concentration capability in mice [5]. They postulate that the mice cannot build up the hyperosmotic
gradient in the kidneys that is necessary for urine concentration. The transcription factor nuclear
factor of activated T-cells 5 (NFAT5) is the main transcription factor activated by the hyperosmotic
environment, and induces the expression of several genes [6]. A recent study in that Special Issue
of Cancers showed that microRNAs that mediate metabolic reprogramming in ccRCC also target
NFAT5 [7]. This was also associated with a reduced level of NFAT5 target genes in the ccRCC samples
compared to solid normal tissue.

In the present study, we analyzed if the hypertonicity-affected genes were also differentially
expressed in ccRCC tumor samples and normal tissue, and if these genes were associated with the
clinical outcome of the patients.

2. Results and Discussion

In contrast to our initial study, where we used microarrays, here we performed RNA-Seq using
primary cultured inner medullary collecting duct (IMCD) cells cultivated at 300 or 900 mosmol/kg
to identify differentially expressed transcripts affected by hypertonicity (for details see Table S1).
We detected significant differences between the two conditions for 355 transcripts (false discovery
rate FDR < 0.05; log2 fold change (FC) >3/<−3) and there were matching human transcripts for 284 of
these (223 genes) (Figure 1A and Table S1). Hierarchical clustering of the TCGA Kidney Clear Cell
Carcinoma (KIRC) samples based RNA-Seq data using the top 223 hypertonicity-affected genes clearly
separated the normal non-tumor tissue samples (n = 67) from the tumor samples (n = 449; Figure 1B).
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Figure 1. (A) Differentially expressed transcripts affected by hypertonicity in primary cultured inner 

medullary collecting duct (IMCD) cells either cultivated at 300 or 900 mosmol/kg. In total, 355 

transcripts were differentially expressed (with a cut off log2 fold change of >3 and <−3) and there 

were matched human transcripts for 284 of those. Of those, 110 transcripts were downregulated and 

174 transcripts were upregulated by hypertonicity. (B) Hierarchical clustering of samples from The 

Cancer Genome Atlas (TCGA) Kidney Clear Cell Carcinoma (KIRC) cohort based on the 

hypertonicity-affected genes. The expression levels of the top 223 regulated genes were extracted 

from the TCGA KIRC cohort, and hierarchical clustering was performed. This set of genes was able 

to clearly separate clear cell renal cell carcinoma (ccRCC) samples (dark green) from the normal 

tissue samples (light green). 

Part of the genes (41) showed a log2 fold change of >3/<−3 between normal and tumor samples. 

Interestingly, several of the transcripts induced by hypertonicity were suppressed, and transcripts 

suppressed by hypertonicity were induced in the tumor samples compared to normal samples 

(Table S1). 

The effect of hyper-osmolality on gene expression can be reverted by hypo osmotic switch [4]. 

For example one of the hypertonicity-induced transcripts (0 fragments per kilobase of transcript per 

million mapped reads (FPKM) at 300 vs. 75 FPKM at 900 mosmol/kg, see Table S1) was the E74-like 

ETS transcription factor 5 (ELF5). ELF5 has been described as a tumor suppressor in RCC and is 

more or less absent in tumor samples (Table S1) [8]. Since ELF5 has an important role as a tumor 

suppressor, we next asked whether it is possible to induce its expression in a ccRCC cell line by 

hyperosmolality. To test this, we used the established ccRCC cell line 786-0, and the same cell line 

that ectopically expresses WT-VHL (786-0-VHL). Both were cultivated either under isotonic (300 

mosmol/kg) or for different periods of time under hyperosmotic (600 mosmol/kg) conditions. 

Indeed, the expression of ELF5 could be induced by cultivation of 786-0 cells under hyperosmotic 

conditions as shown by PCR or qPCR analyses (Figure 2A,B). Interestingly, the induction of ELF5 

expression was higher in VHL+ cells than in VHL-deficient cells. 
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Figure 1. (A) Differentially expressed transcripts affected by hypertonicity in primary cultured inner
medullary collecting duct (IMCD) cells either cultivated at 300 or 900 mosmol/kg. In total, 355 transcripts
were differentially expressed (with a cut off log2 fold change of >3 and <−3) and there were matched
human transcripts for 284 of those. Of those, 110 transcripts were downregulated and 174 transcripts
were upregulated by hypertonicity. (B) Hierarchical clustering of samples from The Cancer Genome
Atlas (TCGA) Kidney Clear Cell Carcinoma (KIRC) cohort based on the hypertonicity-affected genes.
The expression levels of the top 223 regulated genes were extracted from the TCGA KIRC cohort, and
hierarchical clustering was performed. This set of genes was able to clearly separate clear cell renal cell
carcinoma (ccRCC) samples (dark green) from the normal tissue samples (light green).

Part of the genes (41) showed a log2 fold change of >3/<−3 between normal and tumor samples.
Interestingly, several of the transcripts induced by hypertonicity were suppressed, and transcripts
suppressed by hypertonicity were induced in the tumor samples compared to normal samples (Table S1).

The effect of hyper-osmolality on gene expression can be reverted by hypo osmotic switch [4].
For example one of the hypertonicity-induced transcripts (0 fragments per kilobase of transcript per
million mapped reads (FPKM) at 300 vs. 75 FPKM at 900 mosmol/kg, see Table S1) was the E74-like
ETS transcription factor 5 (ELF5). ELF5 has been described as a tumor suppressor in RCC and is more
or less absent in tumor samples (Table S1) [8]. Since ELF5 has an important role as a tumor suppressor,
we next asked whether it is possible to induce its expression in a ccRCC cell line by hyperosmolality.
To test this, we used the established ccRCC cell line 786-0, and the same cell line that ectopically
expresses WT-VHL (786-0-VHL). Both were cultivated either under isotonic (300 mosmol/kg) or for
different periods of time under hyperosmotic (600 mosmol/kg) conditions. Indeed, the expression of
ELF5 could be induced by cultivation of 786-0 cells under hyperosmotic conditions as shown by PCR
or qPCR analyses (Figure 2A,B). Interestingly, the induction of ELF5 expression was higher in VHL+

cells than in VHL-deficient cells.
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Figure 2. E74-like ETS transcription factor 5 (ELF5) expression in 786-0 cells is induced by 

environmental hypertonicity. von Hippel–Lindau (VHL)-deficient 786-0 and VHL-expressing 

(VHL+) 786-0 cells were cultivated either in normal medium (300) or for 24, 48, and 72 h in 600 

mosmol/kg medium. (A) The expression of ELF5 was analyzed by PCR. The osmolality was 

increased by the addition of 100 mM NaCl and 100 mM urea. The expression of ELF5 was VHL 

dependent. (B) The expression of ELF5 was quantified by real-time PCR in VHL-deficient 786-0 and 

VHL-expressing 786-0 VHL+ cells (N > 3, p-Value < 0.05 compared to control (CTL) using one-way 

ANOVA are marked by *, p-Value < 0.01 are marked by **). For more details about the PCR product 

of ELF5, please view the Supplementary Materials. 

Our results clearly indicate that it is possible to induce the expression of the tumor suppressor 

ELF5 in RCC cells only by osmolality without any genetic manipulation. With the hyper-osmolality, 

we have identified a pathway that could be targeted for future intervention. 

In the next step, we analyzed the predictive value of the hypertonicity-related genes for clinical 

outcome in ccRCC patients using the Cox proportional hazards model. Out of the 223 genes, 111 

(49.8%) showed a significant effect (Table 1). 

Table 1. Number of hypertonicity-affected genes and their impact on patient survival. 

Effect on Cancer Specific Survival Downregulated Upregulated 

hazardous 32 35 

indifferent 46 66 

favorable 9 35 

Within the genes that had a significant impact on patients’ survival, hypertonicity-

downregulated genes tend to have a negative effect on survival (32 out of 41) while hypertonicity-

upregulated genes have equal number of negative (35) and positive (35) effects. The corresponding 

data with the gene IDs and fold changes are provided in Table S1. This data suggests that the 

expression of hypertonicity-affected genes can be used to predict cancer-specific survival. 

We next selected a minimum set of genes necessary for survival prediction using RNA-Seq 

data from the TCGA KIRC cohort. We identified 4 (COL1A1, NDUFA4L2, S100A6, MT2A) out of the 

223 different genes that were regulated by hypertonicity in rats and subsequently defined our OSM 

score based on these four genes (Figure S1). Interestingly, all four genes have previously been 

associated with ccRCC tumorigenesis [9–12]. 

Our novel established OSM score based on these four genes was significantly associated with 

cancer-specific survival (Figure 3A; HR = 4.1; 95% CI: 2.78–6.07; p = 4.39 × 10−13; Cox proportional 

hazards regression model) in the TCGA cohort. 
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Figure 2. E74-like ETS transcription factor 5 (ELF5) expression in 786-0 cells is induced by environmental
hypertonicity. von Hippel–Lindau (VHL)-deficient 786-0 and VHL-expressing (VHL+) 786-0 cells
were cultivated either in normal medium (300) or for 24, 48, and 72 h in 600 mosmol/kg medium.
(A) The expression of ELF5 was analyzed by PCR. The osmolality was increased by the addition of
100 mM NaCl and 100 mM urea. The expression of ELF5 was VHL dependent. (B) The expression
of ELF5 was quantified by real-time PCR in VHL-deficient 786-0 and VHL-expressing 786-0 VHL+

cells (N > 3, p-Value < 0.05 compared to control (CTL) using one-way ANOVA are marked by *,
p-Value < 0.01 are marked by **). For more details about the PCR product of ELF5, please view the
Supplementary Materials.

Our results clearly indicate that it is possible to induce the expression of the tumor suppressor
ELF5 in RCC cells only by osmolality without any genetic manipulation. With the hyper-osmolality,
we have identified a pathway that could be targeted for future intervention.

In the next step, we analyzed the predictive value of the hypertonicity-related genes for clinical
outcome in ccRCC patients using the Cox proportional hazards model. Out of the 223 genes, 111 (49.8%)
showed a significant effect (Table 1).

Table 1. Number of hypertonicity-affected genes and their impact on patient survival.

Effect on Cancer Specific Survival Downregulated Upregulated

hazardous 32 35

indifferent 46 66

favorable 9 35

Within the genes that had a significant impact on patients’ survival, hypertonicity-downregulated
genes tend to have a negative effect on survival (32 out of 41) while hypertonicity-upregulated
genes have equal number of negative (35) and positive (35) effects. The corresponding data with
the gene IDs and fold changes are provided in Table S1. This data suggests that the expression of
hypertonicity-affected genes can be used to predict cancer-specific survival.

We next selected a minimum set of genes necessary for survival prediction using RNA-Seq
data from the TCGA KIRC cohort. We identified 4 (COL1A1, NDUFA4L2, S100A6, MT2A) out of
the 223 different genes that were regulated by hypertonicity in rats and subsequently defined our
OSM score based on these four genes (Figure S1). Interestingly, all four genes have previously been
associated with ccRCC tumorigenesis [9–12].

Our novel established OSM score based on these four genes was significantly associated with
cancer-specific survival (Figure 3A; HR = 4.1; 95% CI: 2.78–6.07; p = 4.39 × 10−13; Cox proportional
hazards regression model) in the TCGA cohort.
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Multivariate analysis of the score together with clinicopathological parameters (T (primary 

tumor), N (regional lymph node), M (distant metastasis present at diagnosis), G (grading)) 
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HR (95% CI) 

Including T, N, M, G and OSM score OSM score  2.35 × 10−5 2.6 (1.67–3.69) 

(TCGA cohort) Primary tumor T1/T2  1  
  T3/T4 5.05 × 10−2 1.7 (1–2.86) 
 Lymph nodes N0  1 
  N1 6.15 × 10−2 2.71 (0.95–7.72) 
  NX 2.4 × 10−2 0.6 (0.38–0.93) 
 Distant metastasis M0  1 
  M1 1.55 × 10−12 5.62 (3.48–9.07) 
 Grade G1/G2  1 
  G3/G4 6.69 × 10−3 2.35 (1.27–4.37) 

Including T, N, M, G and OSM score OSM score  1.58 × 10−2 1.34 (1.06–1.7) 

(Validation cohort) Primary tumor T1/T2  1 
  T3/T4 2.54 × 10−1 2.63 (0.5–13.9) 
 Lymph nodes N0  1  
  N1/N2 1.27 × 10−1 0.33 (0.08–1.36) 
 Distant metastasis M0  1 
  M1 2.78 × 10−5 41 (7.22–233.06) 
 Fuhrman grade G1/G2  1 
  G3/G4 9.94 × 10−1 1 (0.29–3.43) 

Figure 3. The OSM score could predict patient survival. (A) Kaplan–Meier plot indicating that
hypertonicity-affected genes using the four selected genes (OSM score) can be applied for the prediction
of patients’ cancer-specific survival in the TCGA KIRC cohort. (B) Kaplan–Meier plot indicating that
the OSM score can be applied for the prediction of patients’ cancer-specific survival in the ccRCC
validation cohort.

Multivariate analysis of the score together with clinicopathological parameters (T (primary tumor),
N (regional lymph node), M (distant metastasis present at diagnosis), G (grading)) indicated that the
score significantly predicted cancer-specific survival (p = 2.3 × 10−5, Table 2).

Table 2. Multivariate Cox regression for cancer-specific survival in the TCGA cohort (n = 409) and the
validation cohort (n = 51).

Multivariate Analyses Variable Level p-Value
(Wald Test) HR (95% CI)

Including T, N, M, G and OSM score OSM score 2.35 × 10−5 2.6 (1.67–3.69)
(TCGA cohort) Primary tumor T1/T2 1

T3/T4 5.05 × 10−2 1.7 (1–2.86)
Lymph nodes N0 1

N1 6.15 × 10−2 2.71 (0.95–7.72)
NX 2.4 × 10−2 0.6 (0.38–0.93)

Distant
metastasis M0 1

M1 1.55 × 10−12 5.62 (3.48–9.07)
Grade G1/G2 1

G3/G4 6.69 × 10−3 2.35 (1.27–4.37)

Including T, N, M, G and OSM score OSM score 1.58 × 10−2 1.34 (1.06–1.7)
(Validation cohort) Primary tumor T1/T2 1

T3/T4 2.54 × 10−1 2.63 (0.5–13.9)
Lymph nodes N0 1

N1/N2 1.27 × 10−1 0.33 (0.08–1.36)
Distant

metastasis M0 1

M1 2.78 × 10−5 41 (7.22–233.06)
Fuhrman

grade G1/G2 1

G3/G4 9.94 × 10−1 1 (0.29–3.43)

Abbreviations: CI, confidence interval; HR, hazard ratio; Ref., reference level; T, primary tumor; N, regional lymph
node; M, distant metastasis present at diagnosis; G, grading. Cases with grading information “GX” or metastasis
status “MX” were excluded from multivariate analyses. OSM scores were determined based on gene expression
data measured by RNA-Seq (TCGA) or microarray analyses (validation cohort).
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The independent role for prediction in the multivariate model was proven by analysis of deviance
(p = 1.2 × 10−4). To validate these results, the OSM score was calculated in an independent cohort
of ccRCC patients (n = 52; for details see [13]) based on expression levels of the selected genes and
their model coefficients. Notably, we showed that the OSM score was also significantly associated
with cancer-specific survival (Figure 3B; HR = 1.29; 95% CI: 1.05–1.59; p = 0.011). Multivariate analysis
confirmed its role in the prediction of cancer-specific survival (p = 0.016) in our validation cohort
(Table 1; analysis of deviance p = 0.0215).

A link between loss of VHL and osmolality has also been shown using kidney-specific VHL
knock-out mice [5]. The authors observed that the mice had increased diuresis. The same group
developed a renal cancer mice model and investigated the gene expression profile in mouse ccRCCs
and kidney cortices [14]. Using these gene expression data, we could demonstrate that the mouse
ccRCCs and normal kidney cortices could be discriminated based on the osmolality-regulated genes
(Figure S2). Our results indicate that VHL function is important for hyper-osmolality-induced gene
expression, as seen for ELF5. In a recent manuscript that we have submitted to Cancers we were able to
show that the deletion of VHL also reduced the expression of several other hyper-osmolality-induced
genes. This implies that VHL is prominently involved in the regulation hyper-osmolality-induced
pathways. Since up to 85% of RCC patients harbor loss of VHL function, it is mandatory to identify the
underlying cellular and molecular mechanisms.

In summary, our in vitro and in vivo data demonstrate that osmolality is an interesting pathway
for the future development of drugs or other interventions in ccRCC which has not been considered so
far. Moreover, this is the first report that defines an expression pattern of genes that can not only be
used to discriminate between normal vs. tumor tissue and is associated with cancer-specific survival in
independent ccRCC cohorts, but have a common physiological mechanism regulating their expression.
Thus, targeting osmolality represents a novel interesting option for ccRCC therapy development, and
further studies are warranted to identify the functional relevance of hypertonicity-associated pathways
in tumor development and proliferation.

3. Materials and Methods

3.1. Primary Renal Cell Culture and RNA-Seq

Experiments were approved by a governmental committee on animal welfare (Landesamt für
Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Germany) and were performed in
accordance with national animal protection guidelines (A 60/1993 and A 67/09).

Primary cultured IMCD cells were prepared as described before [4]. For each group, three biological
replicates were used. The groups included cells which had been cultivated at 300 or 900 mosmol/kg for
one week. Total RNA was isolated using the mirVana miRNA Isolation Kit (Thermo Scientific, Waltham,
MA, USA); 500 ng of total RNA were depleted of ribosomal RNA using the RiboMinus kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Purified RNA
was then fragmented by the addition of fragmentation buffer (200 mM Tris acetate, pH 8.2, 500 mM
potassium acetate, and 150 mM magnesium acetate) and heating at 94 ◦C for 3 min in a thermocycler
followed by ethanol precipitation with ammonium acetate and GlycoBlue (Thermo Fisher Scientific) as
carrier. Fragmented RNA was then reverse transcribed using random hexamer and Superscript III
(Thermo Fisher Scientific). The second strand was synthesized using the TargetAmp kit (Epicentre,
Madison, WI, USA) according to the manufacturer’s instructions. The final steps of library preparation
(e.g., blunt end repair, adapter ligation, adapter fill-in, and amplification) were done according to Meyer
and Kircher [15]. The barcoded libraries were purified and quantified using the Library Quantification
Kit (Illumina/Universal; KAPA Biosystems, Wilmington, MA, USA) according to the manufacturer’s
instructions. A pool of up to 10 libraries was used for cluster generation at a concentration of 10 nM
using an Illumina cBot. Sequencing of 2 × 100 bp was performed with an Illumina HiScanSQ sequencer
at the sequencing core facility of the IZKF Leipzig (Faculty of Medicine, University Leipzig) using
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version 3 chemistry and flowcell according to the instructions of the manufacturer. Demultiplexing of
raw reads, adapter trimming, and quality filtering were done according to Stokowy et al. [16] using
TruSeq (Illumina) adapter sequences.

3.2. 786-0 Renal Cancer Cell Line and Real-Time PCR

The 786-0 and VHL-expressing 786-0-VHL were a kind gift of Prof. Barbara Seliger and were
cultivated as described in [17]. For experimental setting, the cell culture medium was adjusted to
600 mosmol/kg by the addition of 100 mM NaCl and 100 mM urea. The cells were cultivated for
different time points at 600 mosmol/kg. Total RNA isolation and cDNA synthesis were performed as
described previously [4]. Real-time PCR was performed using the SYBR Green PCR Master Mix with
the ABI PRISM 7900 Sequence Detection System. All instruments and reagents were purchased from
Applied Biosystems (Darmstadt, Germany). Relative gene expression values were evaluated with the
2−∆∆Ct method using GAPDH as reference gene [18]. The primer sequences for ELF5 are ELF5-sense
CGT GGA CTG ATC TGT TCA GCA ATG A, ELF5-antisense CAG GGT GGA CTG ATG TCC AGT
ATG A and for GAPDH GAPDH-sense CAA GCT CAT TTC CTG GTA TGA C and GAPDH-antisense
GTG TGG TGG GGG ACT GAG TGT GG.

3.3. Study Cohorts

Publicly available gene expression data from The Cancer Genome Atlas (TCGA) from a cohort of
ccRCC patients (KIRC cohort, n = 449) were used to compare osmolality-induced genes expression
between tumor and non-tumor samples. In this data set, 436 patients had both expression and CSS
data and were used to develop the osmolality score. Expression data from tumor and non-tumor tissue
were downloaded using the Bioconductor TCGAbiolinks package.

The validation cohort consisted of primary tumors with ccRCC histology (n = 52) of patients
treated at the Department of Urology, University Hospital Tuebingen, Germany. Details of the study
and tissue sample collection were described previously [13]. Transcriptome analyses was performed
using the Human Transcriptome Array HTA 2.0 (Affymetrix/Thermo Fisher Scientific, Waltham, MA,
USA), as described previously by Büttner et al. [13]. The accession number for genome-wide data at the
European Genome-phenome Archive (EGA) (www.ebi.ac.uk/ega/home), which is hosted by the EBI
and the CRG, is EGAS00001001176. Cancer-specific survival was used as endpoint in survival analyses
of the development cohort (ccRCC KIRC) and the validation cohort, as described previously [13].

3.4. Statistical Analyses

RNA-Seq reads were aligned using bowtie2 and tophat2 to the rat reference genome (rnor6)
according to Kim et al. [19]. Rat mRNA-Seq read counts were normalized and tested for differential
expression using the Bioconductor edgeR package (v 3.24.3, [20]); 355 rat transcripts showed significant
difference between two conditions: 900 and 300 mosmol/kg (Benjamini–Hochberg [21] adjusted p-Value
< 0.05; log2FC >3/<−3). Of these, 284 of them had matching human transcripts by gene symbol.
For those 284 transcripts (223 genes), mRNA-Seq expression values (FPKM-UQ) of the TCGA-KIRC
cohort (449 tumor samples with 67 matching tissue normal samples) were clustered (hierarchical
clustering with agglomeration method ward. D2 and Euclidean distance). Clustering proved that
selected transcripts expression clearly discriminated between tumor and normal samples. The potential
impact of those genes’ expression on TCGA-KIRC patients’ (n = 436) cancer-specific survival (CSS) was
tested by building a Cox proportional hazards model on each gene’s expression separately (survival
R package v 3.1-7, [21]). We found that 111 genes showed significant effect (Benjamini–Hochberg
adjusted p-Value < 0.05). Later, we built a Cox proportional hazards model with lasso penalty based
on the expression of the entire set of 223 genes (glmnet R package v 2.0-16, [22]). Four genes had
non-zero coefficients according to the model, with minimal cross-validation error. Each TCGA-KIRC
patient was assigned a survival score (termed the OSM score) calculated as the weighted sum of the
expression of the four selected genes multiplied by the respective model coefficient. Analogously, the

www.ebi.ac.uk/ega/home
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score was calculated for our independent RCC cohort (n = 52; [13]) based on selected genes expression
(determined by microarray analyses) and the respective model coefficients. The value was multiplied
by 100,000 times to avoid infinite hazards ratio. Patient cohorts were recursively partitioned based on
the survival score using conditional inference trees [23] with the endpoint CSS. Multivariate survival
analysis was performed using Cox proportional hazards regression models. Comparison of Cox
models (with and without OSM score) was done using analysis of deviance [24].

4. Conclusions

Our study demonstrates that osmolality is an interesting pathway in ccRCC which has not yet been
considered. The expression of hypertonicity-regulated genes is clearly associated with cancer-specific
survival in ccRCC. We were also able to induce the expression of potentially tumor-suppressive genes
by cultivating ccRCC cell lines under hyper-osmotic conditions.

Thus, targeting osmolality-associated pathways might represent a novel interesting therapeutic
option for ccRCC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/1/6/s1,
Figure S1: Selection of differentially expressed transcripts affected by hypertonicity for development of the novel
OSM-score, Figure S2: Hierarchical clustering of samples from the normal kidney cortex and mouse ccRCCs based
on the hypertonicity affected genes, Table S1: Differentially expressed transcripts affected by hypertonicity and
expression differences of corresponding human transcripts in ccRCC tumor and non-tumor tissue of the TCGA
KIRC cohort.
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