12,143 research outputs found

    A search for millimetric emission from Gamma Ray Bursts

    Get PDF
    We have used the 2- year Differential Microwave Radiometer data from the COsmic Background Explorer (COBE) satellite to systematically search for millimetric (31 - 90 GHz) emission from the Gamma Ray Bursts (GRBs) in the Burst And Transient Source Experiment (BATSE) GRB 3B catalog. The large beamsize of the COBE instrument (7 degs FWHM) allows for an efficient search of the large GRB positional error boxes, although it also means that fluxes from (point source) GRB objects will be somewhat diluted. A likelihood analysis has been used to look for a change in the level of millimetric emission from the locations of 81 GRB events during the first two years (1990 & 1991) of the COBE mission. The likelihood analysis determined that we did not find any significant millimetric signal before or after the occurance of the GRB. We find 95% confidence level upper limits of 175, 192 and 645 Jy or, in terms of fluxes, of 9.6, 16.3 and 54.8 10^{-13} erg/cm^2/s, respectively at 31, 53 and 90 GHz. We also look separately at different classes of GRBs, including a study of the top ten (in peak flux) GRBs, the "short burst" and "long burst" subsets, finding similar upper limits. While these limits may be somewhat higher than one would like, we estimate that using this technique with future planned missions could push these limits down to \sim 1 mJy.Comment: 21 pages, 5 figures, to be published in The Astrophysical Journa

    Gamma Ray Burst Host Galaxies Have `Normal' Luminosities

    Get PDF
    The galactic environment of Gamma Ray Bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (A) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (ten with red shifts) shows them to be consistent with a Schechter luminosity function with R∗=−21.8±1.0R^{*} = -21.8 \pm 1.0 as expected for normal galaxies. (B) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with red shifts, however the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>>6×1058ph⋅s−16 \times 10^{58} ph \cdot s^{-1} or >>1.7×1052⋅erg⋅s−11.7 \times 10^{52} \cdot erg \cdot s^{-1}) to be much greater than the average luminosity of the faint sample (∌1058ph⋅s−1\sim 10^{58} ph \cdot s^{-1} or ∌3×1051erg⋅s−1\sim 3 \times 10^{51} erg \cdot s^{-1}). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to GRB host galaxies being normal in luminosity.Comment: 18 pages, 3 figures, Submitted to ApJLet

    Fluctuations and the QCD phase diagram

    Full text link
    In this contribution the role of quantum fluctuations for the QCD phase diagram is discussed. This concerns in particular the importance of the matter back-reaction to the gluonic sector. The impact of these fluctuations on the location of the confinement/deconfinement and the chiral transition lines as well as their interrelation are investigated. Consequences of our findings for the size of a possible quarkyonic phase and location of a critical endpoint in the phase diagram are drawn.Comment: 7 pages, 3 figures, to appear in Physics of Atomic Nucle

    COBE Observations of the Microwave Counterparts of Gamma Ray Bursts

    Get PDF
    We have used the data from the COBE satellite to search for delayed microwave emission (31 - 90 GHz) from Gamma Ray Bursts (GRBs). The large 7∘7^\circ beam of COBE is well matched to the large positional uncertainties in the GRB locations, although it also means that fluxes from (point source) GRB objects will be diluted. In view of this we are doing a statistical search of the GRBs which occurred during the currently released COBE DMR data (years 1990 and 1991), which overlap ∌200\sim 200 GRBs recorded by GRO. Here we concentrate on just the top 10 GRBs (in peak counts/second). We obtain the limits on the emission by comparing the COBE fluxes before and after the GRB at the GRB location. Since it is thought that the microwave emission should lag the GRB event, we have searched the GRB position for emission in the few months following the GRB occurrence.Comment: 5 pages, LaTE

    Near-infrared studies of the 2010 outburst of the recurrent nova U Scorpii

    Get PDF
    We present near-infrared (near-IR) observations of the 2010 outburst of U Sco. JHK photometry is presented on 10 consecutive days starting from 0.59 d after outburst. Such photometry can gainfully be integrated into a larger data base of other multiwavelength data which aim to comprehensively study the evolution of U Sco. Early near-IR spectra, starting from 0.56 d after outburst, are presented and their general characteristics discussed. Early in the eruption, we see very broad wings in several spectral lines, with tails extending up to ∌10 000 km s−1 along the line of sight; it is unexpected to have a nova with ejection velocities equal to those usually thought to be exclusive to supernovae. From recombination analysis, we estimate an upper limit of [inline image] for the ejected mass

    From X-ray dips to eclipse: Witnessing disk reformation in the recurrent nova USco

    Get PDF
    The 10th recorded outburst of the recurrent eclipsing nova USco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after outburst. Two full passages of the companion in front of the nova ejecta were observed, witnessing the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve which disappeared by day 34.9, then yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highly elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal87.Comment: Submitted to ApJ. 16 pages, 16 figure

    On the appearance of hyperons in neutron stars

    Full text link
    By employing a recently constructed hyperon-nucleon potential the equation of state of \beta-equilibrated and charge neutral nucleonic matter is calculated. The hyperon-nucleon potential is a low-momentum potential which is obtained within a renormalization group framework. Based on the Hartree-Fock approximation at zero temperature the densities at which hyperons appear in neutron stars are estimated. For several different bare hyperon-nucleon potentials and a wide range of nuclear matter parameters it is found that hyperons in neutron stars are always present. These findings have profound consequences for the mass and radius of neutron stars.Comment: 12 pages, 12 figures, RevTeX4; summary and conclusions are strengthened, to appear in PR

    A Sensor Failure Simulator for Control System Reliability Studies

    Get PDF
    A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec

    The Cepheid Period-Luminosity Relation at Mid-Infrared Wavelengths: I. First-Epoch LMC Data

    Full text link
    We present the first mid-infrared Period-Luminosity (PL) relations for Large Magellanic Cloud (LMC) Cepheids. Single-epoch observations of 70 Cepheids were extracted from Spitzer IRAC observations at 3.6, 4.5, 5.8 and 8.0 microns, serendipitously obtained during the SAGE (Surveying the Agents of a Galaxy's Evolution) imaging survey of the LMC. All four mid-infrared PL relations have nearly identical slopes over the period range 6 - 88 days, with a small scatter of only +/-0.16 mag independent of period for all four of these wavelengths. We emphasize that differential reddening is not contributing significantly to the observed scatter, given the nearly two orders of magnitude reduced sensitivity of the mid-IR to extinction compared to the optical. Future observations, filling in the light curves for these Cepheids, should noticeably reduce the residual scatter. These attributes alone suggest that mid-infrared PL relations will provide a practical means of significantly improving the accuracy of Cepheid distances to nearby galaxies.Comment: 19 pages, 4 figures, 1 table, Accepted for publication in the Astrophysical Journa
    • 

    corecore