111 research outputs found
Facilitating low-carbon living? A comparison of intervention measures in different community-based initiatives
The challenge of facilitating a shift towards sustainable housing, food and mobility has been taken up by diverse community-based initiatives ranging from ‘top-down’ approaches in low-carbon municipalities to ‘bottom-up’ approaches in intentional communities. This paper compares intervention measures of these two types, focusing on their potential of re-configuring daily housing, food and mobility practices. Taking up critics on dominant intervention framings of diffusing low-carbon technical innovations and changing individual behaviour, we draw on social practice theory for the empirical analysis of four case studies. Framing interventions in relation to re-configuring daily practices, the paper reveals differences and weaknesses of current low-carbon measures of community-based initiatives in Germany and Austria. Low-carbon municipalities mainly focus on introducing technologies and offering additional infrastructure and information to promote low-carbon practices. They avoid interfering into residents’ daily lives and do not restrict carbon-intensive practices. In contrast, intentional communities base their interventions on the collective creation of shared visions, decisions and rules and thus provide social and material structures, which foster everyday low-carbon practices and discourage carbon-intensive ones. The paper discusses the relevance of organisational and governance structures for implementing different types of low-carbon measures and points to opportunities for broadening current policy strategies
Recommended from our members
Investigating patterns of local climate governance: how low-carbon municipalities and intentional communities intervene into social practices
The local level has gained prominence in climate policy and governance in recent years as it is increasingly perceived as privileged arena for policy experimentation and social and institutional innovation. Yet, the success of local climate governance in industrialised countries has been limited so far. One reason may be that local communities focus too much on strategies of technology-oriented ecological modernisation (EM) and individual behaviour change and too little on strategies that target unsustainable social practices and their embeddedness in complex patterns of practices. In this paper we assess and compare the strategies of ‘low-carbon municipalities’ (top-down initiatives) and those of ‘intentional communities’ (bottom-up initiatives). We are interested to find out to what extent and in which ways each community type intervenes in social practices to curb carbon emissions and to explore the scope for further and deeper interventions on the local level. Employing an analytical framework based on social practice theory we identify characteristic patterns of intervention for each community type. We find that low-carbon municipalities face tenacious difficulties in transforming carbon-intensive social practices. While offering some additional low-carbon choices, their ability to reduce carbon-intensive practices is very limited. Their focus on efficiency and individual choice shows little transformative potential. Intentional communities, by contrast, have more institutional and organisational options to intervene into the web of social practices. Finally, we explore to what extent low-carbon municipalities can learn from intentional communities and propose strategies of hybridisation for policy innovation to combine the strengths of both models
Lentivirus-mediated antagomir expression for specific inhibition of miRNA function
Micro RNAs (miRNA) regulate gene expression by hybridization and recruitment of multi-protein complexes to complementary mRNA target sequences. miRNA function can transiently be antagonized by antagomirs—chemically modified oligonucleotides complementary to individual miRNAs. Here, we describe the induction of stable loss-of-function phenotypes for specific miRNAs by lentivirus-mediated antagomir expression. Lentivirally expressed antagomirs are transcribed from a H1-promoter located within the lentiviral 3′LTR and were directed against miRNAs encoded on the polycistronic miR17-92 transcript. Functional silencing of miR-18a, miR-19b and miR-20a by the corresponding antagomirs specifically relieves miRNA-mediated reporter gene repression. Inhibition of miRNA function correlates to reduction of ‘miRNA’ amplification by miRNA-specific quantitative RT-PCR. Furthermore, protein expression of E2F-1, a known miR-20 target, is enhanced by lentivirally expressed anti-miR-20 antagomirs in a dose-dependent manner, whereas over-expression of miR-20a reduces E2F-1 levels. Finally, combined over-expression of specific miRNAs and antagomirs reveals individual and complementary functions of miR-18a and miR-20a and demonstrates specific miRNA impact on cell proliferation in a cell culture model
Erratum to: ‘Early prediction of acute kidney injury after transapical and transaortic aortic valve implantation with urinary G1 cell cycle arrest biomarkers’
Background: Acute kidney injury (AKI) is a common complication following transcatheter aortic valve implantation (TAVI) leading to increased mortality and morbidity. Urinary G1 cell cycle arrest proteins TIMP-2 and IGFBP7 have recently been suggested as sensitive biomarkers for early detection of AKI in critically ill patients. However, the precise role of urinary TIMP-2 and IGFBP7 in patients undergoing TAVI is unknown. Methods: In a prospective observational trial, 40 patients undergoing TAVI (either transaortic or transapical) were enrolled. Serial measurements of TIMP-2 and IGFBP7 were performed in the early post interventional course. The primary clinical endpoint was the occurrence of AKI stage 2/3 according to the KDIGO classification. Results: Now we show, that ROC analyses of [TIMP-2]*[IGFBP7] on day one after TAVI reveals a sensitivity of 100 % and a specificity of 90 % for predicting AKI 2/3 (AUC 0.971, 95 % CI 0.914-1.0, SE 0.0299, p = 0.001, cut-off 1.03). In contrast, preoperative and postoperative serum creatinine levels as well as glomerular filtration rate (GFR) and perioperative change in GFR did not show any association with the development of AKI. Furthermore, [TIMP2]*[IGFBP7] remained stable in patients with AKI = 1, but its levels increased significantly as early as 24 h after TAVI in patients who developed AKI 2/3 in the further course (4.77 +/- 3.21 vs. 0.48 +/- 0.68, p = 0.022). Mean patients age was 81.2 +/- 5.6 years, 16 patients were male (40.0 %). 35 patients underwent transapical and five patients transaortic TAVI. 15 patients (37.5 %) developed any kind of AKI;eight patients (20 %) met the primary endpoint and seven patients required renal replacement therapy (RRT) within 72 h after surgery. Conclusion: Early elevation of urinary cell cycle arrest biomarkers after TAVI is associated with the development of postoperative AKI. [TIMP-2]*[ IGFBP7] provides an excellent diagnostic accuracy in the prediction of AKI that is superior to that of serum creatinine
Stem cell function and stress response are controlled by protein synthesis.
Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour.This work was funded by Cancer Research UK (CR-UK), Worldwide Cancer Research, the Medical Research Council (MRC), the European Research Council (ERC), and EMBO. Research in Michaela Frye's laboratory is supported by a core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Cambridge Stem Cell Institute.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1828
STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa
Early childhood height-adjusted total kidney volume as a risk marker of kidney survival in ARPKD
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is characterized by bilateral fibrocystic changes resulting in pronounced kidney enlargement. Impairment of kidney function is highly variable and widely available prognostic markers are urgently needed as a base for clinical decision-making and future clinical trials. In this observational study we analyzed the longitudinal development of sonographic kidney measurements in a cohort of 456 ARPKD patients from the international registry study ARegPKD. We furthermore evaluated correlations of sonomorphometric findings and functional kidney disease with the aim to describe the natural disease course and to identify potential prognostic markers. Kidney pole-to-pole (PTP) length and estimated total kidney volume (eTKV) increase with growth throughout childhood and adolescence despite individual variability. Height-adjusted PTP length decreases over time, but such a trend cannot be seen for height-adjusted eTKV (haeTKV) where we even observed a slight mean linear increase of 4.5 ml/m per year during childhood and adolescence for the overall cohort. Patients with two null PKHD1 variants had larger first documented haeTKV values than children with missense variants (median (IQR) haeTKV 793 (450–1098) ml/m in Null/null, 403 (260–538) ml/m in Null/mis, 230 (169–357) ml/m in Mis/mis). In the overall cohort, estimated glomerular filtration rate decreases with increasing haeTKV (median (IQR) haeTKV 210 (150–267) ml/m in CKD stage 1, 472 (266–880) ml/m in stage 5 without kidney replacement therapy). Strikingly, there is a clear correlation between haeTKV in the first eighteen months of life and kidney survival in childhood and adolescence with ten-year kidney survival rates ranging from 20% in patients of the highest to 94% in the lowest quartile. Early childhood haeTKV may become an easily obtainable prognostic marker of kidney disease in ARPKD, e.g. for the identification of patients for clinical studies
The First Post-Kepler Brightness Dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
- …