48 research outputs found
Signatures of the excitonic memory effects in four-wave mixing processes in cavity polaritons
We report the signatures of the exciton correlation effects with finite
memory time in frequency domain degenerate four-wave mixing (DFWM) in
semiconductor microcavity. By utilizing the polarization selection rules, we
discriminate instantaneous, mean field interactions between excitons with the
same spins, long-living correlation due to the formation of biexciton state by
excitons with opposite spins, and short-memory correlation effects in the
continuum of unbound two-exciton states. The DFWM spectra give us the relative
contributions of these effects and the upper limit for the time of the
exciton-exciton correlation in the unbound two-exciton continuum. The obtained
results reveal the basis of the cavity polariton scattering model for the DFWM
processes in high-Q GaAs microcavity.Comment: 11 pages, 1 figur
The source of A-type magmas in two contrasting settings: UâPb, LuâHf and ReâOs isotopic constraints
The sources of post-orogenic A-type magmas from two distinct geodynamic settings are compared. The end of the ca. 514â480 Ma Delamerian Orogeny, southeastern South Australia, was marked by ~ 10 Myr of bimodal A-type magmatism, driven by convective removal of thickened lithosphere. Initial Os and Hf isotope ratios record a heterogeneous lithospheric mantle source, with some input from aesthenospheric mantle. Mafic parental melts fractionated to produce the granites. In contrast, initial Os isotope ratios of the A-type magmas that comprise the ca. 1598â1583 Ma Mesoproterozoic Gawler Felsic Large Igneous Province, central South Australia, record a dominant evolved lower crust component. However, initial Hf isotope ratios from these samples are depleted, indicating a mantle source for lithophile elements. This voluminous, bimodal magmatism lasted for ~ 15 Myr, and ended the Wartakan Orogeny. In both cases the homogenisation of chemical (rheological) heterogeneities, inherited from terrain amalgamation and orogenic thickening, strengthened the lithosphere. The contemporaneous fusion of heterogeneous mantle ± crust may represent a common, stabilising influence on the lithospheric column regardless of tectono-magmatic setting
The Large Magellanic Cloud and the Distance Scale
The Magellanic Clouds, especially the Large Magellanic Cloud, are places
where multiple distance indicators can be compared with each other in a
straight-forward manner at considerable precision. We here review the distances
derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing
Binaries, and show that the results from these distance indicators generally
agree to within their errors, and the distance modulus to the Large Magellanic
Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding
to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing
the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science.
From a presentation at the conference The Fundamental Cosmic Distance Scale:
State of the Art and the Gaia Perspective, Naples, May 201
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
Provenance of the Early Mesoproterozoic Radium Creek Group in the northern Mount Painter Inlier: Correlating isotopic signatures to inform tectonic reconstructions
New in situ zircon LA-ICPMS geochronologic and Hf-isotope data from the Radium Creek Group within the Mount Painter Inlier provide important temporal constraints on the Early Mesoproterozoic palaeogeography of eastern Proterozoic Australia. The entire Radium Creek Group was deposited in a single basin forming phase, and has a maximum depositional age of 1595. ±. 3.7. Ma. Detrital zircon from these metasedimentary rocks have U-Pb age populations at ca. 1595. Ma, 1660-1680. Ma, 1710-1780. Ma, ca. 1850. Ma and ca. 2500. Ma. These grains are characterised by isotopically diverse and evolved sources, and have crystallised within predominantly felsic igneous host-rocks. The relative age spectra and isotopic character has more similarity with the Gawler Craton than the Arunta Block, Curnamona Province or the Mount Isa Inlier. These observations suggest that the Mount Painter Province was adjacent to the Gawler Craton in the Early Mesoproterozoic. Our data supports a coherent South Australian Craton at ca. 1595. Ma and a contiguous continental mass that included the North and South Australian cratons. The Mount Painter Inlier occupied a complex plate tectonic setting in the overriding plate of two convergent margins. © 2014 Elsevier B.V
Astronomical Distance Determination in the Space Age: Secondary Distance Indicators
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade