201 research outputs found

    Joint source-channel coding for a quantum multiple access channel

    Get PDF
    Suppose that two senders each obtain one share of the output of a classical, bivariate, correlated information source. They would like to transmit the correlated source to a receiver using a quantum multiple access channel. In prior work, Cover, El Gamal, and Salehi provided a combined source-channel coding strategy for a classical multiple access channel which outperforms the simpler "separation" strategy where separate codebooks are used for the source coding and the channel coding tasks. In the present paper, we prove that a coding strategy similar to the Cover-El Gamal-Salehi strategy and a corresponding quantum simultaneous decoder allow for the reliable transmission of a source over a quantum multiple access channel, as long as a set of information inequalities involving the Holevo quantity hold.Comment: 21 pages, v2: minor changes, accepted into Journal of Physics

    Petrogenesis of Eocene oceanic basalts from the West Philippine Basin and Oligocene arc volcanics from the Palau-Kyushu Ridge drilled at 20°N, 135°E (Western Pacific Ocean).

    Get PDF
    The West Philippine Basin (WPB) is a back-arc basin that opened within the Philippine Sea Plate (PSP) between the current position of the Palau-Kyushu Ridge (PKR) and the margin of East Asia. Spreading occurred at the Central Basin Fault (CBF) mainly from 54 until 30 Ma. The PKR was active since ~ 48 to 35 Ma constituting a single volcanic arc with the Izu-Bonin-Mariana (IBM) Arc. At ~ 42 Ma ago spreading rate and direction changed from NE-SW to NS, stopping at ~ 30 Ma. A late phase of spreading and volcanism took place between 30 and 26 Ma. ODP Leg 195 Site 1201 is located in the WPB, ~ 100 km west of the PKR, on 49 Ma crust formed by NE-SW spreading at the CBF. From ~ 35 to 30 Ma, pelagic sedimentation at Site 1201 was followed by turbidite sedimentation, fed mostly by arc-derived volcanic clasts. The geochemical and isotopic features of Site 1201 basement rocks, which represent Eocene WPB oceanic crust, compared with those of Site 1201 volcanics from the turbidite sequence, representing products of the early Mariana Arc (PKR), provide some insights into the early history of the IBM subduction factory. The WPB basement is made up of aphyric to porphyritic basalts with altered olivine, and preserved plagioclase, clinopyroxene and opaques. The PKR volcanics are porphyritic basalts and andesites with plagioclase, clino- and orthopyroxene, hornblende, alkali feldspar and opaques. Variable textures, and degree of alteration suggesting zeolite facies metamorphic grade, characterize both groups of rocks. The mineralogical and geochemical characteristics of the investigated Site 1201 PKR volcanics highlight their calc-alkaline affinity. This feature is at variance with both other PKR rocks, having mostly boninitic and arc tholeiitic affinity, and WPB basement basalt, having tholeiitic affinity, with some characters transitional to arc-like, as expected for a back-arc basin. New Sr and Nd isotope data, coupled with published Sr, Nd, Pb and Hf isotope data (Savov et al., 2006), highlight the Indian Ocean MORB-like character of Site 1201 basement basalts. This suggests that WPB volcanism tapped an upper mantle domain distinct from that underlying the Pacific Plate. The isotopic features of Site 1201 PKR volcanics are more enriched relative to those of basement basalts reflecting higher amounts of subduction-derived component(s) in the source of arc magmas. Th-Nb relationships and isotope geochemistry of the WPB basement and overlaying arc volcanics suggest addition of subducted sediment mostly as siliceous melts, to the mantle source of the arc volcanics. In that respect, Site 1201 PKR volcanics resemble calc-alkaline volcanics of the currently active Mariana Arc. In addition, the calc-alkaline affinity, unradiogenic neodymium, and inferred Middle Oligocene age of PKR volcanics, suggest they might represent an evolved stage of arc volcanism at Palau-Kyushu Ridge, perhaps shortly before the end of its activity

    Redox transfer at subduction zones: insights from Fe isotopes in the Mariana forearc

    Get PDF
    Subduction zones are active sites of chemical exchange between the Earth’s surface and deep interior and play a fundamental role in regulating planet habitability. However, the mechanisms by which redox sensitive elements (e.g., iron, carbon and sulfur) are cycled during subduction remains unclear. Here we use Fe stable isotopes (δ56Fe), which are sensitive to redox-related processes, to examine forearc serpentinite clasts recovered from deep sea drilling of mud volcanoes formed above the Mariana subduction zone in the Western Pacific. We show that serpentinisation of the forearc by slab-derived fluids produces dramatic δ56Fe variation. Unexpected negative correlations between serpentinite bulk δ56Fe, fluid-mobile element concentrations (e.g., B, As) and Fe3+/ƩFe suggest a concomitant oxidation of the mantle wedge through the transfer of isotopically light iron by slab-derived fluids. This process must reflect the transfer of either sulfate- or carbonate-bearing fluids that preferentially complex isotopically light Fe

    Fundamental limitations to information transfer in accelerated frames

    Get PDF
    We study communication between an inertial observer and one of two causally-disconnected counter accelerating observers. We will restrict the quantum channel considering inertial-to-accelerated bipartite classical and quantum communication over different sets of Unruh modes (single-rail or dual-rail encoding). We find that the coherent information (and therefore, the amount of entanglement that can be generated via state merging protocol) in this strongly restricted channel presents some interesting monogamy properties between the inertial and only one of the accelerated observers if we take a fixed choice of the Unruh mode used in the channel. The optimization of the controllable parameters is also studied and we find that they deviate from the values usually employed in the literature.Comment: 7 pages, 6 figure

    Have Financial Markets Become More Informative?

    Get PDF
    The finance industry has grown. Financial markets have become more liquid. Information technology has improved. But have prices become more informative? Using stock and bond prices to forecast earnings, we find that the information content of market prices has not increased since 1960. The magnitude of earnings surprises, however, has increased. A baseline model predicts that as the efficiency of information production increases, prices become more disperse and covary more strongly with future earnings. The forecastable component of earnings improves capital allocation and serves as a direct measure of welfare. We find that this measure has remained stable. A model with endogenous information acquisition predicts that an increase in fundamental uncertainty also increases informativeness as the incentive to produce information grows. We find that uncertainty has indeed increased outside of the S&P 500, but price informativeness has not

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    Search for Gravitational Wave Bursts from Soft Gamma Repeaters

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first year of LIGO's fifth science run. GW strain upper limits and model-dependent GW emission energy upper limits are estimated for individual bursts using a variety of simulated waveforms. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52 erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target

    First joint search for gravitational-wave bursts in LIGO and GEO600 data

    Get PDF
    We present the results of the first joint search for gravitational-wave bursts by the LIGO and GEO600 detectors. We search for bursts with characteristic central frequencies in the band 768 to 2048 Hz in the data acquired between the 22nd of February and the 23rd of March, 2005 (fourth LSC Science Run - S4). We discuss the inclusion of the GEO600 data in the Waveburst-CorrPower pipeline that first searches for coincident excess power events without taking into account differences in the antenna responses or strain sensitivities of the various detectors. We compare the performance of this pipeline to that of the coherent Waveburst pipeline based on the maximum likelihood statistic. This likelihood statistic is derived from a coherent sum of the detector data streams that takes into account the antenna patterns and sensitivities of the different detectors in the network. We find that the coherentWaveburst pipeline is sensitive to signals of amplitude 30 - 50% smaller than the Waveburst-CorrPower pipeline. We perform a search for gravitational-wave bursts using both pipelines and find no detection candidates in the S4 data set when all four instruments were operating stably.Comment: 30 pages, 8 figure
    • …
    corecore