1,000 research outputs found

    Push-Pull Block Puzzles are Hard

    Full text link
    This paper proves that push-pull block puzzles in 3D are PSPACE-complete to solve, and push-pull block puzzles in 2D with thin walls are NP-hard to solve, settling an open question by Zubaran and Ritt. Push-pull block puzzles are a type of recreational motion planning problem, similar to Sokoban, that involve moving a `robot' on a square grid with 1×11 \times 1 obstacles. The obstacles cannot be traversed by the robot, but some can be pushed and pulled by the robot into adjacent squares. Thin walls prevent movement between two adjacent squares. This work follows in a long line of algorithms and complexity work on similar problems. The 2D push-pull block puzzle shows up in the video games Pukoban as well as The Legend of Zelda: A Link to the Past, giving another proof of hardness for the latter. This variant of block-pushing puzzles is of particular interest because of its connections to reversibility, since any action (e.g., push or pull) can be inverted by another valid action (e.g., pull or push).Comment: Full version of CIAC 2017 paper. 17 page

    The complexity of linear-time temporal logic over the class of ordinals

    Full text link
    We consider the temporal logic with since and until modalities. This temporal logic is expressively equivalent over the class of ordinals to first-order logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability problem over the class of ordinals. Among the consequences of our proof, we show that given the code of some countable ordinal alpha and a formula, we can decide in PSPACE whether the formula has a model over alpha. In order to show these results, we introduce a class of simple ordinal automata, as expressive as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC

    Complexity of checking whether two automata are synchronized by the same language

    Full text link
    A deterministic finite automaton is said to be synchronizing if it has a reset word, i.e. a word that brings all states of the automaton to a particular one. We prove that it is a PSPACE-complete problem to check whether the language of reset words for a given automaton coincides with the language of reset words for some particular automaton.Comment: 12 pages, 4 figure

    Balancing Bounded Treewidth Circuits

    Full text link
    Algorithmic tools for graphs of small treewidth are used to address questions in complexity theory. For both arithmetic and Boolean circuits, it is shown that any circuit of size nO(1)n^{O(1)} and treewidth O(login)O(\log^i n) can be simulated by a circuit of width O(logi+1n)O(\log^{i+1} n) and size ncn^c, where c=O(1)c = O(1), if i=0i=0, and c=O(loglogn)c=O(\log \log n) otherwise. For our main construction, we prove that multiplicatively disjoint arithmetic circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in arithmetic formulas of depth O(k2logn)O(k^2\log n). From this we derive the analogous statement for syntactically multilinear arithmetic circuits, which strengthens a theorem of Mahajan and Rao. As another application, we derive that constant width arithmetic circuits of size nO(1)n^{O(1)} can be balanced to depth O(logn)O(\log n), provided certain restrictions are made on the use of iterated multiplication. Also from our main construction, we derive that Boolean bounded fan-in circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in formulas of depth O(k2logn)O(k^2\log n). This strengthens in the non-uniform setting the known inclusion that SC0NC1SC^0 \subseteq NC^1. Finally, we apply our construction to show that {\sc reachability} for directed graphs of bounded treewidth is in LogDCFLLogDCFL

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

    Reconfiguration of list edge-colorings in a graph

    Get PDF
    11th International Symposium, WADS 2009, Banff, Canada, August 21-23, 2009. ProceedingsWe study the problem of reconfiguring one list edge-coloring of a graph into another list edge-coloring by changing one edge color at a time, while at all times maintaining a list edge-coloring, given a list of allowed colors for each edge. First we show that this problem is PSPACE-complete, even for planar graphs of maximum degree 3 and just six colors. Then we consider the problem restricted to trees. We show that any list edge-coloring can be transformed into any other under the sufficient condition that the number of allowed colors for each edge is strictly larger than the degrees of both its endpoints. This sufficient condition is best possible in some sense. Our proof yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices using O(n [superscript 2]) recolor steps. This worst-case bound is tight: we give an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n [superscript 2]) recolor steps

    Computing with and without arbitrary large numbers

    Full text link
    In the study of random access machines (RAMs) it has been shown that the availability of an extra input integer, having no special properties other than being sufficiently large, is enough to reduce the computational complexity of some problems. However, this has only been shown so far for specific problems. We provide a characterization of the power of such extra inputs for general problems. To do so, we first correct a classical result by Simon and Szegedy (1992) as well as one by Simon (1981). In the former we show mistakes in the proof and correct these by an entirely new construction, with no great change to the results. In the latter, the original proof direction stands with only minor modifications, but the new results are far stronger than those of Simon (1981). In both cases, the new constructions provide the theoretical tools required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended abstract. The full paper was presented at TAMC 2013. (Reference given is for the paper version, as it appears in the proceedings.

    The 'global city' misconceived: the myth of 'global management' in transnational service firms

    Get PDF
    The ‘global city hypothesis' proposed by Saskia Sassen – and subsequently developed by Manuel Castells and others in the theory of a globalized urban network – has in recent years formed the basis for the argument that power and control in transnational firms (TNCs) is primarily situated in global head-offices. Such offices are located in key urban centres such as London, New York or Tokyo where global managerial power is ultimately wielded and where senior managers make strategic decisions about transnational business activity. This paper takes issue with this theoretical legacy, arguing that the idea of strong centralised managerial power and control in contemporary TNCs is far more complex than this literature suggests. It explores how managerial control in some of the supposedly most globalized of business service industries – investment banking and management consultancy – cannot be understood as being centralised in global headquarter offices, and nor does it purely reside with a few senior managers at the top of the transnational organisation. Rather, it argues that managerial control in TNCs is diffused throughout a transnational network of management-level employees, and that strategic power in transnational firms resides with a larger and more dispersed group of actors than has been previously suggested. These arguments are developed through analysis of qualitative research into the managerial strategies and practices of senior business practitioners in the transnational investment banking and management consultancy industries. In presenting qualitative data from interviews with senior management in transnational corporate head offices, the paper thus examines the decision-making process of global management practice and unpacks the complex context in which transnational corporate strategy develops in such firms

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing

    The Louisville Experience

    Get PDF
    This article discusses the University of Louisville srecent experience with its Ph.D. program in Urban and Public Affairs. By stating criteria which can be used to evaluate such programs, the article underscores the favorable results of locating such a program in a former School of Business, now a College of Business and Public Administration. The supportive environment of the College, its strong commitment to community service, and its general visibility provide valuable support for an interdisciplinary program. The article concludes with general principles regarding program definition, approach, strategy, and institutional setting
    corecore