1,000 research outputs found
Push-Pull Block Puzzles are Hard
This paper proves that push-pull block puzzles in 3D are PSPACE-complete to
solve, and push-pull block puzzles in 2D with thin walls are NP-hard to solve,
settling an open question by Zubaran and Ritt. Push-pull block puzzles are a
type of recreational motion planning problem, similar to Sokoban, that involve
moving a `robot' on a square grid with obstacles. The obstacles
cannot be traversed by the robot, but some can be pushed and pulled by the
robot into adjacent squares. Thin walls prevent movement between two adjacent
squares. This work follows in a long line of algorithms and complexity work on
similar problems. The 2D push-pull block puzzle shows up in the video games
Pukoban as well as The Legend of Zelda: A Link to the Past, giving another
proof of hardness for the latter. This variant of block-pushing puzzles is of
particular interest because of its connections to reversibility, since any
action (e.g., push or pull) can be inverted by another valid action (e.g., pull
or push).Comment: Full version of CIAC 2017 paper. 17 page
The complexity of linear-time temporal logic over the class of ordinals
We consider the temporal logic with since and until modalities. This temporal
logic is expressively equivalent over the class of ordinals to first-order
logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability
problem over the class of ordinals. Among the consequences of our proof, we
show that given the code of some countable ordinal alpha and a formula, we can
decide in PSPACE whether the formula has a model over alpha. In order to show
these results, we introduce a class of simple ordinal automata, as expressive
as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability
problem of the temporal logic is obtained through a reduction to the
nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC
Complexity of checking whether two automata are synchronized by the same language
A deterministic finite automaton is said to be synchronizing if it has a
reset word, i.e. a word that brings all states of the automaton to a particular
one. We prove that it is a PSPACE-complete problem to check whether the
language of reset words for a given automaton coincides with the language of
reset words for some particular automaton.Comment: 12 pages, 4 figure
Balancing Bounded Treewidth Circuits
Algorithmic tools for graphs of small treewidth are used to address questions
in complexity theory. For both arithmetic and Boolean circuits, it is shown
that any circuit of size and treewidth can be
simulated by a circuit of width and size , where , if , and otherwise. For our main construction,
we prove that multiplicatively disjoint arithmetic circuits of size
and treewidth can be simulated by bounded fan-in arithmetic formulas of
depth . From this we derive the analogous statement for
syntactically multilinear arithmetic circuits, which strengthens a theorem of
Mahajan and Rao. As another application, we derive that constant width
arithmetic circuits of size can be balanced to depth ,
provided certain restrictions are made on the use of iterated multiplication.
Also from our main construction, we derive that Boolean bounded fan-in circuits
of size and treewidth can be simulated by bounded fan-in
formulas of depth . This strengthens in the non-uniform setting
the known inclusion that . Finally, we apply our
construction to show that {\sc reachability} for directed graphs of bounded
treewidth is in
Computing with cells: membrane systems - some complexity issues.
Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
Reconfiguration of list edge-colorings in a graph
11th International Symposium, WADS 2009, Banff, Canada, August 21-23, 2009. ProceedingsWe study the problem of reconfiguring one list edge-coloring of a graph into another list edge-coloring by changing one edge color at a time, while at all times maintaining a list edge-coloring, given a list of allowed colors for each edge. First we show that this problem is PSPACE-complete, even for planar graphs of maximum degree 3 and just six colors. Then we consider the problem restricted to trees. We show that any list edge-coloring can be transformed into any other under the sufficient condition that the number of allowed colors for each edge is strictly larger than the degrees of both its endpoints. This sufficient condition is best possible in some sense. Our proof yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices using O(n [superscript 2]) recolor steps. This worst-case bound is tight: we give an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n [superscript 2]) recolor steps
Computing with and without arbitrary large numbers
In the study of random access machines (RAMs) it has been shown that the
availability of an extra input integer, having no special properties other than
being sufficiently large, is enough to reduce the computational complexity of
some problems. However, this has only been shown so far for specific problems.
We provide a characterization of the power of such extra inputs for general
problems. To do so, we first correct a classical result by Simon and Szegedy
(1992) as well as one by Simon (1981). In the former we show mistakes in the
proof and correct these by an entirely new construction, with no great change
to the results. In the latter, the original proof direction stands with only
minor modifications, but the new results are far stronger than those of Simon
(1981). In both cases, the new constructions provide the theoretical tools
required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended
abstract. The full paper was presented at TAMC 2013. (Reference given is for
the paper version, as it appears in the proceedings.
The 'global city' misconceived: the myth of 'global management' in transnational service firms
The ‘global city hypothesis' proposed by Saskia Sassen – and subsequently developed by Manuel Castells and others in the theory of a globalized urban network – has in recent years formed the basis for the argument that power and control in transnational firms (TNCs) is primarily situated in global head-offices. Such offices are located in key urban centres such as London, New York or Tokyo where global managerial power is ultimately wielded and where senior managers make strategic decisions about transnational business activity. This paper takes issue with this theoretical legacy, arguing that the idea of strong centralised managerial power and control in contemporary TNCs is far more complex than this literature suggests. It explores how managerial control in some of the supposedly most globalized of business service industries – investment banking and management consultancy – cannot be understood as being centralised in global headquarter offices, and nor does it purely reside with a few senior managers at the top of the transnational organisation. Rather, it argues that managerial control in TNCs is diffused throughout a transnational network of management-level employees, and that strategic power in transnational firms resides with a larger and more dispersed group of actors than has been previously suggested. These arguments are developed through analysis of qualitative research into the managerial strategies and practices of senior business practitioners in the transnational investment banking and management consultancy industries. In presenting qualitative data from interviews with senior management in transnational corporate head offices, the paper thus examines the decision-making process of global management practice and unpacks the complex context in which transnational corporate strategy develops in such firms
Distinguishing sequences for partially specified FSMs
Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing
The Louisville Experience
This article discusses the University of Louisville srecent experience with its Ph.D. program in Urban and Public Affairs. By stating criteria which can be used to evaluate such programs, the article underscores the favorable results of locating such a program in a former School of Business, now a College of Business and Public Administration. The supportive environment of the College, its strong commitment to community service, and its general visibility provide valuable support for an interdisciplinary program. The article concludes with general principles regarding program definition, approach, strategy, and institutional setting
- …
