We consider the temporal logic with since and until modalities. This temporal
logic is expressively equivalent over the class of ordinals to first-order
logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability
problem over the class of ordinals. Among the consequences of our proof, we
show that given the code of some countable ordinal alpha and a formula, we can
decide in PSPACE whether the formula has a model over alpha. In order to show
these results, we introduce a class of simple ordinal automata, as expressive
as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability
problem of the temporal logic is obtained through a reduction to the
nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC