
Distinguishing Sequences for Partially Specified
FSMs

Robert M. Hierons1, Uraz Cengiz Türker2

1 School of Information Systems, Computing and Mathematics, Brunel University,
Uxbridge, Middlesex, UK

2 Sabancı Üniversitesi Orta Mahalle, Üniversite Caddesi No: 27, 34956
Tuzla-Istanbul,TURKEY

rob.hierons@brunel.ac.uk,

urazc@sabanciuniv.edu

Abstract. Distinguishing Sequences (DSs) are used in many Finite State
Machine (FSM) based test techniques. Although Partially Specified FSMs
(PSFSMs) generalise FSMs, the computational complexity of construct-
ing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been
addressed. This paper shows that it is possible to check the existence of
an ADS in polynomial time but the corresponding problem for PDSs
is PSPACE-complete. We also report on the results of experiments with
benchmarks and over 8 ∗ 106 PSFSMs.

1 Introduction

Model Based Testing (MBT) techniques and tools use behavioural models and
generally operate on either finite state machines (FSMs) or labelled transition
systems (LTSs) that define the semantics of the underlying model. There has
been significant interest in automating testing based on an FSM or LTS model in
areas such as sequential circuits [1], lexical analysis [2], software design [3], com-
munication protocols [3–12], object-oriented systems [13], and web services [14–
17]. Such techniques have also been shown to be effective when used in significant
industrial projects [18].

The literature contains many approaches that automatically generate test
sequences from FSM models of systems [11, 19–26]. The reader may also refer
to [8, 27, 28] for detailed surveys of such methods. These methods are based on
fault detection experiments [29], a methodology in which an input sequence x̄
is applied to the implementation under test (IUT) N and the resultant output
sequence is compared to that produced when x̄ is applied to the specification M .
The core principles of fault detection experiments were outlined by Moore [30],
who introduced Checking Experiments and Checking Sequences (CEs, CSs). A
CS is a single test case (input sequence) that is guaranteed to lead to a failure
if the IUT is faulty, assuming that it has no more states than the specification.
A CE is a set of test cases that has this guaranteed fault detection ability.

The literature contains many techniques that automatically generate check-
ing sequences [3, 30–36]. Most approaches consist, in-principle, of three parts:



2

initialization, state identification, and transition verification. The third part can
be seen as identifying the starting and ending states of the transitions. Many
techniques for constructing CSs use distinguishing sequences (DSs) to resolve
the state identification problem. There are two reasons for the interest in DSs:
there are polynomial time algorithms that generate CSs when there is a known
DS and the length of the CS is relatively short when designed with a DS [31, 32,
37, 33, 34]3. There are other approaches such as Unique Input Output (UIO) se-
quences or Characterizing Sets (W-Set) that can be used to identify the current
state of the SUT. However, these lead to longer CSs [38]. A DS can be preset
or adaptive: if the input sequence applied is fixed then the DS is a Preset Dis-
tinguishing Sequence (PDS) and otherwise, when the next input to be applied
depends on the response to the previous input, it is an Adaptive Distinguishing
Sequence (ADS)4. Throughout the paper we refer to PDS or ADS when we
write DS.

1.1 Motivation and Problem Statement

It has been long known that in practice, FSM specifications are often partial
meaning that some state-input combinations do not have corresponding tran-
sitions [40–43]. Such FSMs are called Partially Specified FSMs (PSFSMs). For
PSFSMs the traditional state identification methodologies usually are not appli-
cable [20, 44]. The FSM based testing literature usually applies the Completeness
Assumption [45, 46], which states that the FSMs used are completely specified.
This is justified by assuming that a PSFSM can be completed by, for example,
adding transitions with null output.

Although it is sometimes possible to complete a PSFSM, as reported by
Petrenko and Yevtushenko [44], this is far from being a solution to the general
state identification problem for PSFSMs. For example, sometimes there being
no transition from state s with input x corresponds to the situation in which x
should not be received in state s and testing should respect such a restriction.
This might be the case if the test cases are to be applied by a context that
cannot supply the unspecified inputs [44]. It has been observed that it is possible
to test the IUT via another FSM (tester FSM) such that the tester FSM may
never execute the missing transitions, which partially bypasses the completeness
assumption [47, 48]. Nevertheless, in the FSM based testing literature we know of
only one paper [39] in which the CS generation problem is addressed for PSFSMs.
Although the method proposed [39] introduces a polynomial time algorithm, the
algorithm assumes that DSs are known in advance but does no report how one
can derive DSs for the underlying PSFSM. As far as we are aware, no previous
work has investigated the problem of generating a DS from a PSFSM.

These observations form the motivation for the work reported in this paper,
which explores the complexity of deciding the existence of a DS for a given
PSFSM. We examine the following problems.

3 While the upper bound on PDS length is exponential, test generation takes polyno-
mial time if there is a known PDS.

4 ADSs are also called Distinguishing Sets [31, 39].



3

Definition 1 (PDS-Existence Problem). Given a PSFSM M , is there a
PDS for M?

Definition 2 (ADS-Existence Problem). Given a PSFSM M , is there an
ADS for M?

1.2 Practical Implications of our results and Future Directions

We show that it is possible to decide in polynomial time whether a PSFSM
has an ADS. As a result of this, where a PSFSM has an ADS it is possible to
generate a CS in polynomial time using a previously defined algorithm [39] and
there is the potential to extend other technique for generating a CS from an
FSM. This can all be achieved without making the Completeness Assumption,
leading to test generation algorithms that can be applied where there being no
transition from state s with input x corresponds to the situation in which x
should not be received in state s and testing should respect such a restriction.
This paper reports the results of initial experimental studies in which PSFSMs
were randomly generated and it was found that relatively few of these PSFSMs
had an ADS or a PDS. In contrast, we analysed a benchmark that has PSFSM
specifications of digital circuits and found that where a PSFSM had a DS it was
usually of a reasonable length.

The computational complexity results regarding PDSs are less positive. How-
ever, there may be scope to develop Greedy Algorithms for constructing PDSs
for PSFSMs and we see this as an interesting research direction. While it might
seem that ADSs are preferable to PDSs, there are benefits to using preset DSs.
In particular, preset sequences can be applied using a simpler test infrastruc-
ture and sometimes there are timing constraints that make it difficult to apply
adaptive tests since, for example, they can lead to the IUT timing out.

1.3 Summary of the Paper

We devote Section 2 to introduce terminology and notation that we use through-
out the paper. In Section 3 we examine the computational complexity of checking
the existence of PDSs, next in Section 4 we consider the complexity of check-
ing the existence of ADSs. In Section 5 we present the results of experiments.
Finally we conclude our discussion.

2 Preliminaries

A PSFSM M is defined by tuple (S,X, Y, δ, λ,D) where S = {s1, s2 . . . sn} is
the finite set of states, X = {a, b, . . . , p} and Y = {1, 2, . . . , q} are finite sets
of inputs and outputs, D ⊆ S × X is the domain, δ : D → S is the transition
function, and λ : D → Y is the output function. If (s, x) ∈ D then x is defined
at s. Given input sequence x̄ = x1x2 . . . xk and s ∈ S, x̄ is defined at s if there
exist s1, s2, . . . sk ∈ S such that s = s1 and for all 1 ≤ i ≤ k, xi is defined at si



4

and δ(si, xi) = si+1. M is completely specified if D = S × X and otherwise is
partially specified. If (s, x) ∈ D and x is applied when M is in state s, M moves
to state s′ = δ(s, x) and produces output y = λ(s, x). This defines transition
τ = (s, x/y, s′) and we say that x/y is the label of τ , s is the start state of τ ,
and s′ is the end state of τ .

We use juxtaposition to denote concatenation. The transition and output
functions can be extended to input sequences as follows in which ε is the empty
sequence, x ∈ X, x̄ ∈ X?, and xx̄ is defined at s: δ(s, ε) = s and δ(xx̄) =
δ(δ(s, x), x̄); λ(s, ε) = ε and λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄). If there exists x̄ ∈ X∗
defined in s and s′ such that λ(s, x̄) 6= λ(s′, x̄), then x̄ distinguishes s and s′.
We now define Preset DSs and Adaptive DSs.

Definition 3. Given PSFSM M , x̄ ∈ X∗ is a Preset Distinguishing Sequence
for M if all distinct states of M are distinguished by x̄.

Definition 4. Given PSFSM M = (S,X, Y, δ, λ,D), an Adaptive Distinguish-
ing Sequence is a rooted tree A such that the following hold. Each node is labeled
by a set of states and the root is labeled by S. Each leaf of A is labeled by a
singleton set. Each edge is labeled by an input/output pair.

Let us suppose that node v has state set S′. If v has one or more outgoing
edges then these edges are labeled by the same input x, x is defined in all states
in S′, and if there exists s ∈ S′ such that λ(s, x) = y then there is a unique edge
(v, x/y, v′) such that v′ is labeled with the set S′′ = {s′′ ∈ S|∃s′ ∈ S′.λ(s′, x) =
y ∧ δ(s′, x) = s′′} of states reached from S′ by a transition with label x/y.

If v has state set S′ ⊆ S and has one or more outgoing edges then the input
x on these edges satisfies the following property: for all s, s′ ∈ S′ with s 6= s′ we
have that either λ(s, x) 6= λ(s′, x) or δ(s, x) 6= δ(s′, x).

An ADS defines an experiment ending in a leaf. From the last condition,
two states cannot be mapped to the same state unless they have already been
distinguished. Applying A in s ∈ S leads to the input/output sequence that
labels both a path from the root of A to a leaf and a path of M with start state
s. From the definition, the input/output sequences for distinct states differ and
so A distinguishes the states of M .

3 Preset Distinguishing Sequences

The following immediately follows from the PSPACE hardness of PDS existence
problem for completely specified FSMs [34].

Lemma 1. The problem of deciding whether a PSFSM has a PDS is PSPACE-hard.

We now give an upper bound for the length of a minimal PDS to use in the
proof that the PDS existence problem is in PSPACE, adapting the approach for
FSMs [49]. Throughout the following S, S̄ are sets of states. Sequence x̄ ∈ X∗
splits S̄ if it distinguishes two or more states of S̄ and for all distinct s, s′ ∈ S̄,
δ(s, x̄) = δ(s′, x̄) ⇒ λ(s, x̄) 6= λ(s′, x̄). We let n = |S|, m = |S̄| and ν = |x̄|. We



5

write x̄i to denote the ith input of x̄ and prei(x̄) to denote the prefix of length
i. We also write δ(s, prei(x̄)) to denote the state reached when we apply prei(x̄)
at s and by abusing notation we write δ(S̄, prei(x̄)) =< δ(s, prei(x̄))|s ∈ S̄ > to
denote a vector of states called a state configuration.

A minimal PDS x̄ is of the form x̄1x̄2 . . . x̄p where the partition on S induced
by prefixes of x̄ changes (becomes more refined) on the last inputs of the x̄k. In
the worst case, prefix x̄1x̄2 . . . x̄k distinguishes k states from all others and so at
the end of this either the start state is known or we have a set S̄ of n− k states
that are possible ‘current states’. This is the worst case because it maximises
the size of S̄. Consider x̄k and S̄. Concatenating an input with a state config-
uration forms an input-state configuration. Then x̄k can be represented by se-
quence < x̄1k.δ(S̄, pre1(x̄k)) > < x̄2k.δ(S̄, pre2(x̄k)) > · · · < x̄νk.δ(S̄, preν(x̄k)) >

of configurations. If < x̄jk.δ(S̄, prej(x̄k)) >=< x̄ik.δ(S̄, prei(x̄k)) > for j < i then

x̄′k =< x̄1k.δ(S̄, pre1(x̄k)) > · · · < x̄jk.δ(S̄, prej(x̄k)) > < x̄i+1
k .δ(S̄, prei+1(x̄k)) >

· · · < x̄νk.δ(S̄, preν(x̄k)) > can replace x̄k in x̄. Thus, if x̄ is minimal then the
configurations obtained by applying x̄k to S̄ have no repetitions. The maximum
number of state configurations reached from S̄ is C

(
n
m

)
. Thus, since m = |S̄|

changes from 2 to n, the length of the minimal PDS is bounded above by
` =

∑i=n
i=2 C

(
n
i

)
< 2n.

Lemma 2. One can check if PSFSM M has a PDS using polynomial space.

Proof. We show that a non-deterministic Turing Machine (TM) T can solve the
problem using polynomial space. T guesses one input at a time, maintaining
a set π of pairs of states such that (s, s′) ∈ π if and only if the current input
sequence x̄ takes s ∈ S to s′. T also maintains equivalence relation r such that
(s, s′) ∈ r if and only if s and s′ are not distinguished by x̄. When T guesses an
input it updates π and r. The input sequence received defines a PDS if no two
different states are related under r. Thus, T can generate a PDS from a PSFSM
M that has a PDS and requires polynomial space.

Now consider the case where there is no PDS for M and we have to guarantee
that T terminates with failure. In order to achieve this goal, T will use an extra
log2(`) = n bits of space as a counter. It increments the counter each time it
guesses an input and before each guess T checks this counter to see whether it
has reached the upper bound. T terminates with failure if the states have not
been distinguished (determined by examining r) and the counter reaches the
upper bound value `.

Thus the problem can be solved in polynomial space by a non-deterministic
TM. The result follows from non-deterministic PSPACE being equal to PSPACE [50].

Using Lemmas 1 and 2 we have the following result.

Theorem 1. The problem of deciding whether a PSFSM has a PDS is PSPACE-complete.

4 Adaptive Distinguishing Sequences

Let us assume that we have been given a PSFSM M and that we wish to decide
whether it has an ADS and, if it does, generate such an ADS. We will show



6

how given M we can construct a completely specified FSM M(M) such that
there is a suitable correspondence between ADSs for M and M(M). Given
M = (S′, X ′, Y ′, δ, λ,D) we will define M(M) = (Q,X, Y, δQ, λQ) as follows.

We take two copies M1 = (S1, X ′, Y ′, δ, λ,D1), M2 = (S2, X ′, Y ′, δ, λ,D2)
of M , we give the states superscripts to distinguish between states of M1 and
M2 and so if s is a state of M then the corresponding states of M1 and M2 are
s1 and s2 respectively. The state set of M(M) is S = S1 ∪ S2. We add a new
input d and new outputs y, y1, y2 and so the set of input symbols of M(M) is
X = X ′ ∪ {d} and the set of output symbols is Y = Y ′ ∪ {y, y1, y2}. We let s0
denote some fixed state from S2: the choice of state does not affect the proof.
The transition function δQ of M(M) is defined as follows:

δQ(s, x) =


s1b , s = s1a, x is specified at sa ∧ δ(sa, x) = sb,
s2b , s = s2a, x is specified at sa ∧ δ(sa, x) = sb,
s0, x is not specified at s,
s0, x = d

The output function λQ of M(M) is defined as follows in which i ∈ {1, 2},

λQ(si, x) =


λ(s, x), If x is specified at s,
y, x is not specified at s and x 6= d,
y1, x is not specified at s ∧ x = d ∧ i = 1,
y2, x is not specified at s ∧ x = d ∧ i = 2,

It is clear thatM(M) is completely specified. The construction also ensures that
we cannot distinguish states s1 and s2 without using input d. It also ensures
that in forming an ADS we cannot apply d in a node whose current set of
states contains states ski and skj in which i 6= j: the application of d would map
these to state s0 with common output yk. Further, until d has been applied,
for every state s we have that s1 and s2 are in the same block (have yet to be
distinguished) and so an ADS cannot apply an input that is not specified in s;
such an input takes s1 and s2 to the same state with common output y.

Recall that each node of an ADS has an associated set of states, which is
the set of possible states given the observed input/output sequence that labels
the path from the root of the ADS to this node. We will say that an ADS A is
non-redundant if the only nodes of A that have singleton sets are the leaves of
A. If this property does not hold then the use of A in a state s can lead to the
application of input in the situations in which s has already been distinguished
from the other states of M (the current state set is a singleton); such an ADS
can be replaced by a non-redundant ADS. We will now prove that we have the
required correspondence between non-redundant ADSs for M and M(M). We
demonstrate the construction in Figure 3.



7

s1

s2

s3

a/0

b/1

a/0

b/1

b/0

Fig. 1: PSFSM M1

s1

s2

s3

s0

s′1

s′2

s′3

a/0

b/1

d/y1

a/0

b/1

d/y1b/0

a/y,d/y1

a/0

b/1

d/y2

Σ/y2

a/0

b/1

d/y2 b/0

a/y,d/y2

Fig. 2: Completely specified FSM M(M)
constructed from PSFSM M1 given in Fig-
ure 1

b

s0

y2

b

d

s1

y1

s′1

y2

1

d

s2

y1

s′2

y2

0

1

d

s3

y1

s′3

y2

0

Fig. 3: ADS constructed for M(M) given in Figure 2.
Highlighted tree is an ADS for PSFSM M1 given in
Figure 1

In the following, given an ADS A we let Ad denote the ADS A′ that applies
input d when a leaf of A has been reached.

Lemma 3. If A is an ADS for the PSFSM M then Ad is an ADS for M(M).

Proof. First, since A is an ADS for M we must have that it distinguishes all ski
and slj in which i 6= j. Thus, it is sufficient to prove that for all s ∈ S we have

that Ad distinguishes s1 and s2. First, observe that by definition the application
of A in s does not lead to an input being applied in a state where it is not
specified. Thus, if the application of A in state s of M leads to state s1 then



8

the application of A in state s1 leads to s11 and the application of A in state s2

leads to s21. However, the input of d then distinguishes these states. The result
therefore follows.

Lemma 4. Given PSFSM M , if A is a non-redundant ADS for M(M) then
A = A′d for some ADS A′ for M .

Proof. First observe that since A is an ADS forM(M), for each state s of M the
application of A in s1 and s2 must lead to d being applied; otherwise A does not
distinguish s1 and s2. Further, d maps all states to s0 and so a non-redundant
ADS does not apply any further input after d. Thus, there exists some A′ such
that A = A′d and A′ does not contain input d.

Let us suppose that the input of A′ in state sk (1 ≤ k ≤ 2) leads to the
sequence (sk1 , x1/y1, s

k
2) . . . (skm, xm/ym, s

k
m+1) of transitions. Then we must have

(s1, x1/y1, s2), . . . , (sm, xm/ym, sm+1) are transitions of M since otherwise A
would not distinguish between s1 and s2; some input xi would be applied in a
state ski such that xi is not specified in si and so s1 and s2 would be mapped to
the same state before d is applied. Thus, the application of A′ in a state s of M
leads to a sequence of inputs begin applied in states where they are specified.
Now consider states si and sj of M . Since A distinguishes between s1i and s1j
we must have that A′ distinguishes s1i and s1j . Since the application of A′ in a
state s of M does not lead to an input begin applied in a state where it is not
specified, we have that the output produced by applying A′ in state s of M is
the same as the output produced by applying A′ in state s1 of M(M). Thus,
since A′ distinguishes states s1i and s1j of M(M) we have that A′ distinguishes
states si and sj of M . Since this holds for all si, sj ∈ S with si 6= sj we have
that A′ is an ADS for M as required.

Theorem 2. Given an incomplete FSM M with n states and p inputs, it is
possible to decide in time O(pn log n) whether M has an ADS and, if it does, it
is possible to construct such an ADS in O(pn2) time.

Proof. By Lemmas 3 and 4 we know that M has an ADS if and only if M(M)
has an ADS. Thus, the first part of the result follows from it being possible to
decide in O(pn log n) whether M(M) has an ADS [34]. The second part of the
result follows from there being an O(pn2) algorithm that will generate an ADS
for M(M) if it has such an ADS [34].

It is known that if a completely specified FSM M has an ADS then it has

one of length at most π2n2

12 . Thus, given a partially specified FSM M with n
states we have that ifM(M) has an ADS then it has an ADS of depth at most
π2n2

3 since M(M) has 2n states. Since the last input of a non-redundant ADS
µ for M(M) is d, and this can be removed when constructing the ADS for M
from µ, we can conclude that if M has an ADS then it has an ADS of depth at

most π2n2

3 − 1. However, whether this is a tight bound is an open problem.



9

5 Experimental Results

This section describes the results of experiments using 8 ∗ 106 randomly gener-
ated PSFSMs and PSFSMs of digital circuits from a benchmark. We found that
PSFSM specifications usually have DSs of a reasonable length, when they exist.

5.1 PSFSM Generation

To construct a PSFSM with n states, p inputs and q outputs, we first randomly
generated a minimal, strongly connected, completely specified FSM using the
tool utilised in [37, 51]. In this process we randomly assigned the values of δ(s, x)
and λ(s, x) for each state s and input x. We then checked whether the machine
M was strongly connected, minimal, and had an ADS5. If the FSM failed one
or more of these tests then we omitted this FSM and produced another.

Having constructed an FSM M , we randomly select an integer K between
n and n ∗ p. Afterwards, we randomly select K state-input pairs. For each pair
(s, x) we erased the transition of M whose start state is s and input label is x. If
deleting a transition disconnected the FSM then we did not delete this transition
and guessed another state input pair.

By following this scheme we formed four classes of PSFSMs where each class
had 2 ∗ 106 PSFSMs. The sizes of the input/output alphabets and the state sets
were (2/2, 9), (2/2, 17), (3/3, 9), and (3/3, 17) respectively. To carry out these
experiments we used an Intel Xeon E5-1650 @3.2-GHZ CPU with 16 GB RAM.

5.2 Results

In Table 1, we show how many PSFMSs had an ADS/PDS. In the third column
we see the number of PSFSMs that had an ADS and in the fourth column we
see that number of PSFSMs that had a PDS.

Comparing the first and the third or the second and the fourth rows of the
third column, we can see that the number of PSFMSs that have an ADS appears
to increase with the size of the input and output alphabets. The results in the
first and the second or the third and the fourth rows of the third column suggest
that as the number of states increases the number of PSFMSs that have an
ADS reduces. The number of PSFMSs that possess an ADS is larger than the
number with a PDS, which is to be expected since a PDS defines an ADS but
the converse is not the case. These results are just as expected since it is well
known that the ratio of the number of states to the number of outputs affects
the distinguishablity of the states [29].

5 We used the LY-Algorithm from [34]



10

|S|
∑

M ADS PDS

|Σ| = 2
9 2 ∗ 106 120.575 (6.02%) 16.365 (0.81%)
17 2 ∗ 106 40.368 (2.01%) 26.784 (1.33%)

|Σ| = 3
9 2 ∗ 106 415.101 (20.75%) 23.561 (1.17%)
17 2 ∗ 106 113.023 (5.65%) 33.590 (1.67%)

Table 1: Number of PSFSMs that have ADS/PDS. |S|, |Σ|, |
∑
M |, ADS, PDS

are the number of states, the cardinality of the input/output alphabets, the
number of PSFSMs, the number of PSFSMs that have an ADS, the number of
PSFSMs that have a PDS respectively.

Fig. 4: ADS lengths and frequencies
of 120575 PSFSMs where |S| = 9,
|Σ| = 2.

Fig. 5: ADS lengths and frequencies
of 415101 PSFSMs where |S| = 9,
|Σ| = 3.

Fig. 6: ADS lengths and frequencies
of 40368 PSFSMs where |S| = 17,
|Σ| = 2.

Fig. 7: ADS lengths and frequencies
of 113023 PSFSMs where |S| = 17,
|Σ| = 3.



11

Consider now the depths of the ADSs shown in Figures 4, 5, 6 and 7. Here
we find that the depth of most of the ADSs are close to the lower bound formula
logq|S|, where q is the size of the output alphabet. Moreover, comparing Figures 4
with 6 and 5 with 11, we see that the depths of the ADSs increases with the
number of states. Figures 4-5 and 6-7 reveal that depths seem to decrease as the
number of inputs and outputs increases.

Fig. 8: PDS length distribution of
16365 PSFSMs where |S| = 9, |Σ| =
2.

12

Fig. 9: PDS length distribution of
23561 PSFSMs where |S| = 9, |Σ| =
3.

Fig. 10: PDS length distribution of
26784 PSFSMs where |S| = 17,
|Σ| = 2.

Fig. 11: PDS length distribution of
33590 PSFSMs where |S| = 17,
|Σ| = 3.

The lengths of the PDSs are presented in Figures 8, 9, 10 and 11. Inter-
estingly, although there is no polynomial upper bound on PDS length, these
PSFSMs are relatively short. In fact, most of the lengths are lower than |S| and
the results are similar to those for ADSs. However, fewer PSFSMs had a PDS
than had an ADS.



12

In the experiments only a relatively small percentage of PSFSMs had DSs.
This can be explained by the high number of transitions left undefined; at least
one per state on average and up to one per state/port pair. Observe that a
PSFSM M is guaranteed not to have a DS if for every input x we have that M
has a state s from which there is no transition with input x. The choices made
in the experiments made it extremely likely that a randomly generated PSFSM
M had this property. It is unclear what proportion of transitions are typically
unspecified in practice, a factor that is likely to significantly influence how many
PSFSMs have DSs, and so we explored a set of benchmark PSFSMs.

5.3 Benchmark Dataset

We considered the ACM/SIGDA benchmarks. This benchmark has 59 FSM spec-
ifications ranging from simple circuits to advanced circuits obtained from indus-
try [52]. The FSM specifications are presented in kiss2 format where “don’t care”
inputs are specified as −. We converted the kiss2 format to our FSM specifica-
tion format. The analysis revealed that 25.42% of the specifications have partial
transitions and so we determined how many of these PSFSMs had DSs. For each
PSFSM we applied the adapted LY algorithm and found that 20% of the PSF-
SMs had ADSs. We also execute the brute–force algorithm presented in [29] to
compute the PDSs of the PSFSMs and found that all PSFSMs with ADSs also
had PDSs. In Table 2 we present the size of the PSFSMs and the length of the
ADSs/PDSs.

Table 2: Lengths of ADSs and PDSs for PSFSMs.

Name ADS-PDS lengths |S| |X|
ex1 3-4 20 29

ex4 3-7 14 26

ex6 4-6 8 25

opus 3-7 10 25

These results are important and justify our initial claims. Without applying
a completeness assumption to the PSFSMs in benchmark (if such assumption is
applicable for these PSFSMs), one can compute ADSs and use the checking se-
quence generation algorithm similar to the method presented in [39] to construct
polynomial length checking sequences for the PSFSMs in the benchmark.

6 Conclusions

In this paper we addressed the state identification problem for partially specified
deterministic finite state machines (PSFSMs). Specifically, we considered adap-
tive and preset distinguishing sequences (ADS/PDS) motivated by the fact that
a checking experiment can be constructed in polynomial time if we have a PDS



13

or ADS. We determined the complexity of checking the existence of ADSs and
PDSs for PSFSMs: it is polynomial time solvable to test if a PSFSM possesses
an ADS and it is PSPACE-complete in the case of PDSs. The results of experi-
ments suggest that ADSs and PDSs are relatively short where they exist. This
suggests that where DSs exist they can form the basis for generating checking
sequences of reasonable size.

We showed that the depth of an ADS is bounded above by π2n2

3 − 1 for
PSFSMs. As we do not know whether the bound on the ADS is tight, it would
be interesting to find a tight bound on ADSs length. The PDS problem is
PSPACE-complete and so it would also be interesting to explore heuristics, such as
Greedy algorithms, for this problem. Finally, there is a need to run experiments
with more PSFSMs representing real specifications in order to further explore
how often there are DSs and how long these tend to be.

References

1. A.D. Friedman and P.R. Menon. Fault detection in digital circuits. Computer
Applications in Electrical Engineering Series. 1971.

2. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, principles, techniques, and tools.
Addison-Wesley series in computer science.

3. T. S. Chow. Testing software design modelled by finite state machines. IEEE
Transactions on Software Engineering, 4:178–187, 1978.

4. Gerard J. Holzmann. Design and validation of computer protocols. Prentice-Hall
software series.

5. E. Brinksma. A theory for the derivation of tests. In Proceedings of Protocol
Specification, Testing, and Verification VIII, pages 63–74, Atlantic City, 1988.
North-Holland.

6. A.T. Dahbura, K.K. Sabnani, and M.U. Uyar. Formal methods for generating
protocol conformance test sequences. Proceedings of the IEEE, 78(8):1317–1326,
Aug.

7. D. Lee, K.K. Sabnani, D.M. Kristol, and S. Paul. Conformance testing of proto-
cols specified as communicating finite state machines-a guided random walk based
approach. Communications, IEEE Transactions on, 44(5):631–640, May.

8. D. Lee and M. Yannakakis. Principles and methods of testing finite-state machines
- a survey. Proceedings of the IEEE, 84(8):1089–1123, 1996.

9. S.H. Low. Probabilistic conformance testing of protocols with unobservable tran-
sitions. In Network Protocols, 1993. Proceedings., 1993 International Conference
on, pages 368–375, Oct.

10. Milena Mihail and Christos H. Papadimitriou. On the random walk method for
protocol testing. In In Proc. Computer-Aided Verification (CAV 1994), volume
818 of LNCS, pages 132–141. Springer, LNCS, 1994.

11. K. Sabnani and A. Dahbura. A protocol test generation procedure. Computer
Networks, 15(4):285–297, 1988.

12. D. P. Sidhu and T.-K. Leung. Formal methods for protocol testing: A detailed
study. IEEE Transactions on Software Engineering, 15(4):413–426, 1989.

13. R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, 1999.



14

14. M. Haydar, A. Petrenko, and H. Sahraoui. Formal verification of web applications
modeled by communicating automata. In FORTE 2004, volume 3235 of LNCS,
pages 115–132, 2004.

15. Aysu Betin-Can and Tevfik Bultan. Verifiable concurrent programming using con-
currency controllers. In Proceedings of the 19th IEEE international conference on
Automated software engineering, pages 248–257. IEEE Computer Society, 2004.

16. I. Pomeranz and S. M. Reddy. Test generation for multiple state-table faults in
finite-state machines. IEEE Transactions on Computers, 46(7):783–794, 1997.

17. Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-
based testing approaches. Software Testing, Verification and Reliability, 22(5):297–
312, 2012.

18. Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Vı́ctor A. Braberman.
Model-based quality assurance of protocol documentation: tools and methodology.
Software Testing, Verification and Reliability, 21(1):55–71, 2011.

19. A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization technique
for protocol conformance test generation based on uio sequences and rural chinese
postman tours. In Protocol Specification, Testing, and Verification VIII, pages
75–86, Atlantic City, 1988. Elsevier (North-Holland).

20. F. C. Hennie. Fault-detecting experiments for sequential circuits. In Proceedings of
Fifth Annual Symposium on Switching Circuit Theory and Logical Design, pages
95–110, Princeton, New Jersey, November 1964.

21. G. Gonenc. A method for the design of fault detection experiments. IEEE Trans-
actions on Computers, 19:551–558, 1970.

22. M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics and Systems Analysis,
9:653–665.

23. S. T. Vuong, W. W. L. Chan, and M. R. Ito. The UIOv-method for protocol
test sequence generation. In The 2nd International Workshop on Protocol Test
Systems, Berlin, 1989.

24. S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Transactions on Software Engineering,
17(6):591–603, 1991.

25. H. Ural and K. Zhu. Optimal length test sequence generation using distinguishing
sequences. IEEE/ACM Transactions on Networking, 1(3):358–371, 1993.

26. Alexandre Petrenko and Nina Yevtushenko. Testing from partial deterministic
FSM specifications. IEEE Transactions on Computers, 54(9):1154–1165, 2005.

27. G. v. Bochmann and A. Petrenko. Protocol testing: Review of methods and rele-
vance for software testing. In ACM International Symposium on Software Testing
and Analysis, pages 109–123, Seattle USA, 1994.

28. R. Lai. A survey of communication protocol testing. Journal of Systems and
Software, 62(1):21 – 46, 2002.

29. Z. Kohavi. Switching and Finite State Automata Theory. McGraw-Hill, New York,
1978.

30. E. P. Moore. Gedanken-experiments. In C. Shannon and J. McCarthy, editors,
Automata Studies. Princeton University Press, 1956.

31. R. T. Boute. Distinguishing sets for optimal state identification in checking exper-
iments. IEEE Trans. Comput., 23:874–877, 1974.

32. Rob M. Hierons and Hasan Ural. Optimizing the length of checking sequences.
IEEE Trans. Comput., 55:618–629, 2006.

33. Guy-Vincent Jourdan, Hasan Ural, Husnu Yenigun, and Ji Zhang. Lower bounds
on lengths of checking sequences. Formal Aspects of Computing, 22(6):667–679,
2010.



15

34. D. Lee and M. Yannakakis. Testing finite-state machines: State identification and
verification. IEEE Trans. on Computers, 43(3):306–320, 1994.

35. Adenilso da Silva Simão and Alexandre Petrenko. Checking completeness of tests
for finite state machines. IEEE Transactions on Computers, 59(8):1023–1032, 2010.

36. Adenilso da Silva Simão, Alexandre Petrenko, and Nina Yevtushenko. On reduc-
ing test length for FSMs with extra states. Software Testing, Verification and
Reliability, 22(6):435–454, 2012.

37. Robert M. Hierons, Guy-Vincent Jourdan, Hasan Ural, and Husnu Yenigun. Check-
ing sequence construction using adaptive and preset distinguishing sequences. In
SEFM, pages 157–166, 2009.

38. Hasan Ural. Formal methods for test sequence generation. Computer Communi-
cations, 15(5):311 – 325, 1992.

39. Adenilso da Silva Simão and Alexandre Petrenko. Generating checking sequences
for partial reduced finite state machines. In TestCom/FATES, pages 153–168, 2008.

40. Po-Chang Tsai, Sying-Jyan Wang, and Feng-Ming Chang. FSM-based pro-
grammable memory bist with macro command. In Memory Technology, Design,
and Testing, 2005. MTDT 2005. 2005 IEEE International Workshop on, pages
72–77, Aug.

41. K. Zarrineh and S.J. Upadhyaya. Programmable memory bist and a new synthesis
framework. In Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth
Annual International Symposium on, pages 352–355, June.

42. Lei Xie, Jiaolong Wei, and Guangxi Zhu. An improved FSM-based method for BGP
protocol conformance testing. In International Conference on Communications,
Circuits and Systems, pages 557–561, 2008.

43. A. Drumea and C. Popescu. Finite state machines and their applications in software
for industrial control. In 27th Int. Spring Seminar on Electronics Technology:
Meeting the Challenges of Electronics Technology Progress, volume 1, pages 25–29,
2004.

44. Alexandre Petrenko and Nina Yevtushenko. Testing from partial deterministic
FSM specifications. IEEE Transactions on Computers, 54(9):1154–1165, 2005.

45. M. Yannakakis and D. Lee. Testing finite state machines: Fault detection. Journal
of Computer and System Sciences, 50(2):209 – 227, 1995.

46. N. Yevtushenko and A. Petrenko. Synthesis of test experiments in some classes of
automata. Automatic Control and Computer Sciences, 4, 1990.

47. A. Gill. Introduction to The Theory of Finite State Machines. McGraw-Hill, New
York, 1962.

48. June-Kyung Rho, G. Hachtel, and F. Somenzi. Don’t care sequences and the
optimization of interacting finite state machines. In Computer-Aided Design, 1991.
ICCAD-91. Digest of Technical Papers., 1991 IEEE International Conference on,
pages 418–421, Nov.

49. M.N. Sokolovskii. Diagnostic experiments with automata. Kibernetica, (no: 6):44–
49, 1971.

50. Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177 – 192, 1970.

51. Canan Güniçen, Uraz Cengiz Türker, Hasan Ural, and Hüsnü Yenigün. Generating
preset distinguishing sequences using sat. In Erol Gelenbe, Ricardo Lent, and
Georgia Sakellari, editors, Computer and Information Sciences II, pages 487–493.
Springer London, 2012. 10.1007/978-1-4471-2155-8 62.

52. Franc Brglez. ACM/SIGMOD benchmark dataset, available online at
http://cbl.ncsu.edu:16080/benchmarks/Benchmarks-upto-1996.html.


