
Reconfiguration of List Edge-Colorings in a Graph

Takehiro Ito1⋆, Marcin Kamiński2⋆⋆, and Erik D. Demaine3

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.

takehiro@ecei.tohoku.ac.jp
2 Department of Computer Science, Université Libre de Bruxelles,

CP 212, Bvd. du Triomphe, 1050 Bruxelles, Belgium.
marcin.kaminski@ulb.ac.be

3 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA.

edemaine@mit.edu

Abstract. We study the problem of reconfiguring one list edge-coloring of a graph into
another list edge-coloring by changing only one edge color assignment at a time, while at all
times maintaining a list edge-coloring, given a list of allowed colors for each edge. First we
show that this problem is PSPACE-complete, even for planar graphs of maximum degree 3
and just six colors. We then consider the problem restricted to trees. We show that any
list edge-coloring can be transformed into any other under the sufficient condition that the
number of allowed colors for each edge is strictly larger than the degrees of both its endpoints.
This sufficient condition is best possible in some sense. Our proof yields a polynomial-time
algorithm that finds a transformation between two given list edge-colorings of a tree with n
vertices using O(n2) recolor steps. This worst-case bound is tight: we give an infinite family
of instances on paths that satisfy our sufficient condition and whose reconfiguration requires
Ω(n2) recolor steps.

1 Introduction

Reconfiguration problems arise when we wish to find a step-by-step transformation be-
tween two feasible solutions of a problem such that all intermediate results are also feasi-
ble. Ito et al. [8] proposed a framework of reconfiguration problems, and gave complexity
and approximability results for reconfiguration problems derived from several well-known
problems, such as independent set, clique, matching, etc. In this paper, we study a
reconfiguration problem for list edge-colorings of a graph.

An (ordinary) edge-coloring of a graph G is an assignment of colors from a color set
C to each edge of G so that every two adjacent edges receive different colors. In list edge-
coloring, each edge e of G has a set L(e) of colors, called the list of e. Then, an edge-coloring
f of G is called an L-edge-coloring of G if f(e) ∈ L(e) for each edge e, where f(e) denotes
the color assigned to e by f . Figure 1 illustrates three L-edge-colorings of the same graph
with the same list L; the color assigned to each edge is surrounded by a box in the list.
Clearly, an edge-coloring is merely an L-edge-coloring for which L(e) = C for every edge
e of G, and hence list edge-coloring is a generalization of edge-coloring.

Suppose now that we are given two L-edge-colorings of a graph G (e.g., the leftmost
and rightmost ones in Fig. 1), and we are asked whether we can transform one into the
⋆ This work is partially supported by Grant-in-Aid for Scientific Research: 22700001 (T. Ito).

⋆⋆ Chargé de Recherches du F.R.S. – FNRS.

{ c3 ,c4} {c3, c4 }

{c1,c2, c3 ,c4}

{ c2 }
{ c1 ,c3}{ c1 ,c4}

{ c3 ,c4} {c3, c4 }

{c1,c2,c3, c4 }

{ c2 }
{ c1 ,c3}{ c1 ,c4}

{ c3 ,c4} {c3, c4 }

{c1,c2,c3, c4 }

{ c2 }
{c1, c3 }{ c1 ,c4}

(a) (b) (c)

Fig. 1. A sequence of L-edge-colorings of a graph.

other via L-edge-colorings of G such that each differs from the previous one in only one
edge color assignment. We call this problem the list edge-coloring reconfiguration
problem. For the particular instance of Fig. 1, the answer is “yes,” as illustrated in Fig. 1,
where the edge whose color assignment was changed from the previous one is depicted by
a thick line. One can imagine a variety of practical scenarios where an edge-coloring (e.g.,
representing a feasible schedule) needs to be changed (to use a newly found better solution
or to satisfy new side constraints) by individual color changes (preventing the need for
any coordination) while maintaining feasibility (so that nothing goes wrong during the
transformation). Reconfiguration problems are also interesting in general because they
provide a new perspective and deeper understanding of the solution space and of heuristics
that navigate that space.

Reconfiguration problems have been studied extensively in recent literature [1, 3, 4,
6–8, 11], in particular for (ordinary) vertex-colorings. For a positive integer k, a k-vertex-
coloring of a graph is an assignment of colors from {c1, c2, . . . , ck} to each vertex so that
every two adjacent vertices receive different colors. Then, the k-vertex-coloring re-
configuration problem is defined analogously. Bonsma and Cereceda [1] proved that k-
vertex-coloring reconfiguration is PSPACE-complete for k ≥ 4; they also proved
that the reconfiguration problem for list vertex-colorings is PSPACE-complete even for
planar graphs of maximum degree 4 and four colors. On the other hand, Cereceda et al.
[4] proved that k-vertex-coloring reconfiguration is solvable in polynomial time
for 1 ≤ k ≤ 3. Edge-coloring in a graph G can be reduced to vertex-coloring in the “line
graph” of G. However, by this reduction, we can solve only a few instances of list edge-
coloring reconfiguration; all edges e of G must have the same list L(e) = C of size
|C| ≤ 3 although any edge-coloring of G requires at least ∆(G) colors, where ∆(G) is the
maximum degree of G. Furthermore, the reduction does not work the other way, so we do
not obtain any complexity results.

In this paper, we give three results for list edge-coloring reconfiguration. The
first is to show that the problem is PSPACE-complete, even for planar graphs of maximum
degree 3 and six colors. The second is to give a sufficient condition for which there exists
a transformation between any two L-edge-colorings of a tree. Specifically, for a tree T , we
prove that any two L-edge-colorings of T can be transformed into each other if |L(e)| ≥
max{d(v), d(w)} + 1 for each edge e = vw of T , where d(v) and d(w) are the degrees of
the endpoints v and w of e, respectively. Our proof for the sufficient condition yields a
polynomial-time algorithm that finds a transformation between two given L-edge-colorings
of T via O(n2) intermediate L-edge-colorings, where n is the number of vertices in T . On

2

the other hand, as the third result, we show that our worst-case bound on the number
of intermediate L-edge-colorings is tight: we give an infinite family of instances on paths
that satisfy our sufficient condition and whose transformation requires Ω(n2) intermediate
L-edge-colorings. An early version of the paper has been presented in [9].

Our sufficient condition for trees was motivated by several results on the well-known
“list coloring conjecture” [10]: it is conjectured that any graph G has an L-edge-coloring
if |L(e)| ≥ χ′(G) for each edge e, where χ′(G) is the chromatic index of G, that is, the
minimum number of colors required for an ordinary edge-coloring of G. This conjecture
has not been proved yet, but some results are known for restricted classes of graphs [2,
5, 10]. In particular, Borodin et al. [2] proved that any bipartite graph G has an L-edge-
coloring if |L(e)| ≥ max{d(v), d(w)} for each edge e = vw. Because any tree is a bipartite
graph, one might think that it would be straightforward to extend their result [2] to our
sufficient condition. However, this is not the case, because the focus of reconfiguration
problems is not the existence (as in the previous work) but the reachability between two
feasible solutions; there must exist a transformation between any two L-edge-colorings if
our sufficient condition holds.

Finally, we remark that our sufficient condition is best possible in some sense. Consider
a star K1,n−1 of n − 1 edges in which each edge e has the same list L(e) = C of size
|C| = n − 1. Then, |L(e)| = max{d(v), d(w)} for all edges e = vw, and it is easy to see
that there is no transformation between any two L-edge-colorings of the star.

2 PSPACE-completeness

Before proving PSPACE-completeness, we introduce some terms and define the problem
more formally. In Section 1, we have defined an L-edge-coloring of a graph G = (V, E)
with a list L. We say that two L-edge-colorings f and f ′ of G are adjacent if∣∣{e ∈ E : f(e) ̸= f ′(e)}

∣∣ = 1,

that is, f ′ can be obtained from f by changing the color assignment of a single edge e;
the edge e is said to be recolored between f and f ′. A reconfiguration sequence between
two L-edge-colorings f0 and ft of G is a sequence of L-edge-colorings f0, f1, . . . , ft of
G such that fi−1 and fi are adjacent for i = 1, 2, . . . , t. We also say that two L-edge-
colorings f and f ′ are connected if there exists a reconfiguration sequence between f
and f ′. Clearly, any two adjacent L-edge-colorings are connected. Then, the list edge-
coloring reconfiguration problem is to determine whether two given L-edge-colorings
of a graph G are connected. Note that this problem is a decision problem, and hence does
not ask an actual reconfiguration sequence. For a reconfiguration sequence between two
L-edge-colorings, its length is defined as the number of L-edge-colorings contained in the
reconfiguration sequence, and hence the length of the reconfiguration sequence in Fig. 1 is
3.

The main result of this section is the following theorem.

Theorem 1. List edge-coloring reconfiguration is PSPACE-complete for planar
graphs of maximum degree 3 whose lists are chosen from six colors.

3

(a) (b) (c)

2

22

2

11

2

2

2

1

12

1

2

2

u v

Fig. 2. (a) A configuration of an NCL machine, (b) NCL And vertex u, and (c) NCL Or
vertex v.

In order to prove Theorem 1, we give a polynomial-time reduction from Nondetermin-
istic Constraint Logic (NCL) [7] to our problem. An NCL “machine” is specified by a
constraint graph: an undirected graph together with an assignment of weights from {1, 2}
to each edge of the graph. A configuration of this machine is an orientation (direction)
of the edges such that the sum of weights of incoming edges at each vertex is at least 2.
Figure 2(a) illustrates a configuration of an NCL machine, where each weight-2 edge is
depicted by a thick line and each weight-1 edge by a thin line. A move from one configu-
ration is simply the reversal of a single edge direction which results in another (feasible)
configuration. Given an NCL machine and its two configurations, it is PSPACE-complete
to determine whether there exists a sequence of moves which transforms one configuration
into the other [7].

In fact, the problem remains PSPACE-complete even for And/Or constraint graphs,
which consist only of two types of vertices, called “NCL And vertices” and “NCL Or
vertices.” A vertex of degree 3 is called an NCL And vertex if its three incident edges
have weights 1, 1 and 2. (See Fig. 2(b).) An NCL And vertex u behaves as a logical And,
in the following sense: the weight-2 edge can be directed outward for u if and only if both
two weight-1 edges are directed inward for u. Note that, however, the weight-2 edge is not
necessarily directed outward even when both weight-1 edges are directed inward. A vertex
of degree 3 is called an NCL Or vertex if its three incident edges have weights 2, 2 and 2.
(See Fig. 2(c).) An NCL Or vertex v behaves as a logical Or: one of the three edges can be
directed outward for v if and only if at least one of the other two edges is directed inward
for v. It should be noted that, although it is natural to think of NCL And and Or vertices
as having inputs and outputs, there is nothing enforcing this interpretation; especially for
NCL Or vertices, the choice of input and output is entirely arbitrary because an NCL
Or vertex is symmetric. The NCL machine in Fig. 2(a) is an And/Or constraint graph.
From now on, we call an And/Or constraint graph simply an NCL machine.

Proof of Theorem 1.

It is easy to see that list edge-coloring reconfiguration can be solved in (most
conveniently, nondeterministic [12]) polynomial space. Therefore, in the remainder of this
section, we show that the problem is PSPACE-hard by giving a polynomial-time reduction
from NCL. This reduction involves constructing two types of gadgets which correspond to
NCL And and Or vertices. We call an edge of an NCL machine an NCL edge, and say
simply an edge of a graph for list edge-coloring reconfiguration.

4

(a) (b)

{ c1 ,c3}{c1, c2 }

u x vu v

Fig. 3. (a) An NCL edge uv and (b) its corresponding edges ux and xv of a graph with
lists L(ux) = {c1, c2} and L(xv) = {c1, c3}.

Assume in our reduction that the color c1 corresponds to “directed inward,” and that
both colors c2 and c3 correspond to “directed outward.” Consider an NCL edge uv directed
from u to v. (See Fig. 3(a).) Then, the NCL edge is directed outward for u, but is directed
inward for v. Clearly, in list edge-coloring, each edge can receive only one color. Therefore,
we need to split one NCL edge uv into two edges ux and xv of a graph with lists L(ux) =
{c1, c2} and L(xv) = {c1, c3}, as illustrated in Fig. 3(b). The new vertex x is sometimes
called midpoint of an NCL edge uv. Note that every NCL half-edge joins a non-midpoint
and a midpoint; our viewpoint is always on the non-midpoint when we say “directed
inward” or “directed outward.” It is easy to see that one of ux and xv can be colored with
c1 if and only if the other edge is colored with either c2 or c3. This property represents that
an NCL half-edge can be directed inward if and only if the other half is directed outward.
Note that, if neither ux nor xv is colored with c1, then the corresponding NCL edge uv
can be directed arbitrarily.

Figure 4 illustrates three kinds of “And gadgets,” each of which corresponds to an NCL
And vertex u; two edges uxx and uyy correspond to the two weight-1 NCL half-edges,
and the edge uzz corresponds to the weight-2 NCL half-edge; thus, the three vertices x, y
and z correspond to midpoints adjacent with u in an NCL machine. Since NCL And and
Or vertices are connected together into an arbitrary NCL machine, there should be eight
kinds of And gadgets according to the choice of lists {c1, c2} and {c1, c3} for three edges
uxx, uyy and uzz. However, since the two weight-1 NCL edges are symmetric, it suffices
to consider these three kinds: all the three edges have the same list, as in Fig. 4(a); uzz
has a different list from the other two edges, as in Fig. 4(b); and one of uxx and uyy has
a different list from the other two edges, as in Fig. 4(c).

We denote by F(A; cx, cy, cz) the set of all L-edge-colorings f of an And gadget A
such that f(uxx) = cx, f(uyy) = cy and f(uzz) = cz. Then, all the L-edge-colorings
in F(A; cx, cy, cz) correspond to the same direction of the three NCL half-edges in the
NCL And vertex. We now check that the three kinds of And gadgets satisfy the same
constraints as an NCL And vertex; we check this property by enumerating all possible
L-edge-colorings of the And gadgets. For example, in the And gadget A of Fig. 4(a), uzz
can be colored with c2 (directed outward) if and only if both uxx and uyy are colored with
c1 (directed inward); in other words, |F(A; cx, cy, c2)| ≥ 1 if and only if cx = cy = c1. In
addition, every And gadget A satisfies the following two properties:

(i) For each triple (cx, cy, cz) such that |F(A; cx, cy, cz)| ≥ 2, any two L-edge-colorings
f and f ′ in F(A; cx, cy, cz) are “internally connected,” that is, there exists a recon-
figuration sequence between f and f ′ via L-edge-colorings only in F(A; cx, cy, cz);
and

5

(a) (b)

{c1,c3}

{c1,c2} {c1,c2}

{c4,c5}

{c2,c4}

{c3,c5}

x y

z

uz

ux uy

{c1,c2}

{c1,c2} {c1,c2}

{c4,c5}

{c2,c4}

{c2,c5}

x y

z

uz

ux uy

{c1,c2}

{c1,c2} {c2,c3}

{c4,c5}

{c2,c4}

{c2,c5}

x

y

z

uz

ux

uy
{c1,c3}

 (c)

Fig. 4. Three kinds of And gadgets corresponding to an NCL And vertex u. The vertices
x, y and z correspond to midpoints adjacent with u in an NCL machine.

(ii) For every two triples (cx, cy, cz) and (c′x, c′y, c
′
z) which differ in a single coordinate, if

|F(A; cx, cy, cz)| ≥ 1 and |F(A; c′x, c′y, c
′
z)| ≥ 1, then there exist two L-edge-colorings

f ∈ F(A; cx, cy, cz) and f ′ ∈ F(A; c′x, c′y, c
′
z) such that f and f ′ are adjacent.

Then, it is easy to see that the reversal of a single NCL half-edge direction in an NCL
And vertex can be simulated by a reconfiguration sequence between two L-edge-colorings
each of which is chosen arbitrarily from the set F(A; cx, cy, cz), where the triple (cx, cy, cz)
corresponds to the direction of the three NCL half-edges.

Figure 5 illustrates two kinds of “Or gadgets,” each of which corresponds to an NCL
Or vertex v; three edges vxx, vyy and vzz correspond to the three weight-2 NCL half-
edges; thus, the three vertices x, y and z correspond to midpoints adjacent with v in an
NCL machine. Since an NCL Or vertex is entirely symmetric, it suffices to consider these
two kinds: all the three edges vxx, vyy and vzz have the same list, as in Fig. 5(a); and one
edge has a different list from the other two edges, as in Fig. 5(b). Then, similarly as And
gadgets, it is easy to see that both kinds of Or gadgets satisfy the same constraints as
an NCL Or vertex, and that the reversal of a single NCL half-edge direction in an NCL
Or vertex can be simulated by a reconfiguration sequence between two corresponding
L-edge-colorings.

6

(a) (b)

{c1,c2}

{c1,c2}

{c1,c2}

{c3,c6}{c2,c5}

{c4,c5,c6}

{c2,c4}

x
y

z

vz

vx
vy

{c2,c3}

{c1,c2}

{c1,c2}

{c3,c6}{c2,c5}

{c4,c5,c6}

{c2,c4}

x y

z

vz

vx vy
{c1,c3}

Fig. 5. Two kinds of Or gadgets corresponding to an NCL Or vertex v. The vertices x,
y and z correspond to midpoints adjacent with v in an NCL machine.

We now construct the corresponding instance of list edge-coloring reconfigu-
ration. Given NCL machine, we construct a graph G with a list L by replacing NCL
And and Or vertices (together with their NCL half-edges) with And and Or gadgets,
respectively. Then, every configuration of the NCL machine can be mapped to at least
one (in general, to exponentially many) L-edge-colorings of G. We can choose an arbitrary
one for each of two given configurations of the NCL machine, because each And gadget
satisfies Property (i) above and each Or gadget does the counterpart. Since NCL remains
PSPACE-complete even if an NCL machine is planar [7], G is a planar graph of maximum
degree 3. Furthermore, each list L(e) is a subset of {c1, c2, . . . , c6}.

It is now easy to see that there is a sequence of moves which transforms one config-
uration into the other if and only if there is a reconfiguration sequence between the two
L-edge-colorings of G.

This completes the proof of Theorem 1. ⊓⊔

3 Trees

Since list edge-coloring reconfiguration is PSPACE-complete, it is rather unlikely
that the problem can be solved in polynomial time for general graphs. However, in Section
3.1, we give a sufficient condition for which any two L-edge-colorings of a tree T are
connected; our sufficient condition can be checked in polynomial time. Moreover, our proof
yields a polynomial-time algorithm that finds a reconfiguration sequence of length O(n2)
between two given L-edge-colorings, where n is the number of vertices in T . In Section
3.2, we give an infinite family of instances on paths that satisfy our sufficient condition
and whose reconfiguration sequence requires length Ω(n2).

3.1 Sufficient condition

The main result of this subsection is the following theorem, whose sufficient condition is
in some sense best possible as we mentioned in Section 1.

7

Theorem 2. For a tree T with n vertices, any two L-edge-colorings f and f ′ of T are
connected if |L(e)| ≥ max{d(v), d(w)} + 1 for each edge e = vw of T . Moreover, there is
a reconfiguration sequence of length O(n2) between f and f ′.

Since ∆(T) ≥ max{d(v), d(w)} for all edges vw of a tree T , Theorem 2 immediately
implies the following sufficient condition for which any two (ordinary) edge-colorings of
T are connected. Note that, for a positive integer k, a k-edge-coloring of a tree T is an
L-edge-coloring of T for which all edges e have the same list L(e) = {c1, c2, . . . , ck}.

Corollary 1. For a tree T with n vertices, any two k-edge-colorings f and f ′ of T are
connected if k ≥ ∆(T) + 1. Moreover, there is a reconfiguration sequence of length O(n2)
between f and f ′.

It is obvious that the sufficient condition of Corollary 1 is also best possible in some sense;
consider the star K1,n−1 in Section 1.

In the remainder of this subsection, as a proof of Theorem 2, we give a polynomial-
time algorithm that finds a reconfiguration sequence of length O(n2) between two given
L-edge-colorings f0 and ft of a tree T if our sufficient condition holds.

We first give an outline of our algorithm. By the breadth-first search starting from an
arbitrary vertex r of degree 1, we order all edges e1, e2, . . . , en−1 of a tree T . At the ith
step, 1 ≤ i ≤ n−1, the algorithm recolors ei from the current color to its target color ft(ei)
without recoloring any of the edges e1, e2, . . . , ei−1. Therefore, ei is never recolored after
the ith step, while ej with j > i may be recolored even if ej is colored with ft(ej). We will
show later that every edge of T can be recolored in such a way, and hence we eventually
obtain the target L-edge-coloring ft after (n − 1) steps of the algorithm. Our algorithm
recolors each edge ej with j ≥ i at most once in the ith step, and hence ei receives its
target color ft(ei) by recoloring at most (n − i) edges. We thus obtain a reconfiguration
sequence of total length

∑n−1
i=1 (n − i) = O(n2).

Definitions.
For a tree T , we denote by V (T) and E(T) the vertex set and edge set of T , respectively.

Suppose that we are given a tree T with a list L such that

|L(e)| ≥ max{d(v), d(w)} + 1 (1)

v

u

p

u

r

p

(a) T (b) Tu

eu

eveu

Tu

Fig. 6. (a) Subtree Tu in the whole tree T and (b) inside of Tu.

8

for each edge e = vw in E(T). We choose an arbitrary vertex r of degree 1 as the root
of T , and regard T as a rooted tree. For a vertex u in V (T) \ {r}, let p be the parent
of u in T . We denote by Tu the subtree of T which is rooted at p and is induced by p,
u and all descendants of u in T . (See Fig. 6(a).) It should be noted that Tu includes the
edge eu = pu, but does not include the other edges incident to p. Therefore, Tu consists
of a single edge if u is a leaf of T . We always denote by eu the edge which joins u and its
parent p.

Let f be an L-edge-coloring of a tree T . For a vertex v of T , we say that a color c is
available on v in f if c ̸∈ {f(vx) : vx ∈ E(T)}, that is, c is not assigned to any of the edges
incident to v. For an edge e = vw of T and its endpoint v, we define a subset Cav(f, e, v)
of L(e), as follows:

Cav(f, e, v) = L(e) \ {f(vx) : vx ∈ E(T)}. (2)

That is, Cav(f, e, v) is the set of all colors in L(e) that are available on v for e. Therefore,
Cav(f, e, v)∩Cav(f, e, w) is the set of all colors in L(e) that are available for e = vw when
we wish to recolor e from f(e).

We now have the following lemma.

Lemma 1. Let eu = pu be an arbitrary edge in T such that p is the parent of u. Let
c be any color in Cav(f, eu, p). Then, there exists an L-edge-coloring f ′ of T such that
f ′(eu) = c and f ′ can be obtained by recoloring each edge in Tu at most once.

Proof. We prove the lemma by induction on the number of edges in Tu. By Eq. (2) c is not
assigned to any of the edges incident to p in the whole tree T . Therefore, if Tu contains
exactly one edge eu = pu and hence u is a leaf of T , then eu can be recolored to any color
in Cav(f, eu, p). Thus, the lemma clearly holds for this case.

We may assume that the color c ∈ Cav(f, eu, p) is assigned to some edge ev = uv, as
illustrated in Fig. 6(b); because, otherwise, the lemma clearly holds. By Eqs. (1) and (2)
we have

|Cav(f, ev, u)| ≥
∣∣L(ev)

∣∣ − ∣∣{f(ux) : ux ∈ E(T)}
∣∣

≥ max{d(u), d(v)} + 1 − d(u)
≥ 1.

Therefore, Cav(f, ev, u) contains at least one color c′, and hence we can apply the induction
hypothesis for the edge ev = uv and the color c′. Then, we have an L-edge-coloring f ′′ of
T such that f ′′(ev) = c′ without recoloring any edge in T \ Tv. Since c was assigned to
ev = uv in f , we have c ∈ Cav(f ′′, eu, u). Clearly, Cav(f ′′, eu, p) = Cav(f, eu, p), and hence
c ∈ Cav(f ′′, eu, p) ∩Cav(f ′′, eu, u). Therefore, we can now recolor eu = pu from f(eu) to c.
Note that each edge in Tu is recolored at most once, as required. ⊓⊔

Algorithm.
We are now ready to describe our algorithm. Assume that all edges e1, e2, . . . , en−1

of a tree T are ordered by the breadth-first search starting from the root r of T . At the
ith step, 1 ≤ i ≤ n − 1, the algorithm recolors ei to its target color ft(ei). Consider the
ith step of the algorithm, and let f be the current L-edge-coloring of T obtained after

9

u

p

eup
ei

Tu

ei-1

Fig. 7. The ith step of the algorithm.

(i − 1) steps of the algorithm; let f = f0 for the first step i = 1. Then, we wish to recolor
ei = pp′ from the current color f(ei) to the target color ft(ei). (See also Fig. 7.) There are
the following two cases to consider.

Case (a): ft(ei) ∈ Cav(f, ei, p) ∩ Cav(f, ei, p
′)

In this case, ft(ei) is available for ei, that is, there is no edge which is adjacent with
ei and is colored with ft(ei). Therefore, we can simply recolor ei from f(ei) to its target
color ft(ei).

Case (b): ft(ei) /∈ Cav(f, ei, p) ∩ Cav(f, ei, p
′)

In this case, there are at most two edges pu and p′u′ which are colored with ft(ei)
and are sharing the endpoints p and p′ with ei, respectively. Let p be the parent of p′, as
illustrated in Fig. 7.

We first consider the case ft(ei) /∈ Cav(f, ei, p). Then, the color ft(ei) is assigned to
some edge eu = pu. But, in the target L-edge-coloring ft, the color ft(ei) is not assigned
to any edge incident to p other than ei = pp′. Since the edges e1, e2, . . . , ei−1 have already
received their target colors, eu must appear after ei in the breadth-first search order. (See
also Fig. 7.) By Eqs. (1) and (2) we have

|Cav(f, eu, p)| ≥ max{d(p), d(u)} + 1 − d(p) ≥ 1.

Therefore, Cav(f, eu, p) contains a color c, and hence we can apply Lemma 1 to the edge
eu = pu and the color c. We can thus obtain an L-edge-coloring f ′ of T such that f ′(eu) = c
without recoloring any of the edges e1, e2, . . . , ei−1. Note that ft(ei) ∈ Cav(f ′, ei, p) since
ft(ei) was assigned to ej = pu in f .

We then consider the case ft(ei) /∈ Cav(f, ei, p
′). Let f ′ be the L-edge-coloring of T

obtained above; let f ′ = f if ft(ei) ∈ Cav(f, ei, p). Since ft(ei) ∈ Cav(f ′, ei, p), we apply
Lemma 1 to the edge ei and the color ft(ei). Then, we can obtain an L-edge-coloring f ′′

of T such that f ′′(ei) = ft(ei), as required.

In this way, we can always recolor ei to ft(ei) at the ith step, 1 ≤ i ≤ n − 1, without
recoloring any of the edges e1, e2, . . . , ei−1. Therefore, our algorithm terminates with the
target L-edge-coloring ft. Since the algorithm recolors an edge at most once in each step,
at most (n − i) edges are recolored in the ith step. Therefore, the total length of the
reconfiguration sequence is

∑n−1
i=1 (n − i) = O(n2).

This completes the proof of Theorem 2. ⊓⊔

10

3.2 Length of reconfiguration sequence

We showed in Section 3.1 that any two L-edge-colorings of a tree T are connected via a re-
configuration sequence of length O(n2) if our sufficient condition holds. In this subsection,
we show that this worst-case bound on the length is tight: we give an infinite family of
instances on paths that satisfy our sufficient condition and whose reconfiguration sequence
requires length Ω(n2).

Consider a path P = v0v1 . . . v3m+1 of 3m + 1 edges in which every edge e has the
same list L(e) = {c1, c2, c3}. Clearly, the list L satisfies Eq. (1), and hence any two L-
edge-colorings of P are connected. We construct two L-edge-colorings f0 and ft of P , as
follows: (see also Fig. 8):

f0(vivi+1) =

c3 if i ≡ 0 mod 3;
c2 if i ≡ 1 mod 3;
c1 if i ≡ 2 mod 3

(3)

for each edge vivi+1, 0 ≤ i ≤ 3m, and

ft(vivi+1) =

c3 if i ≡ 0 mod 3;
c1 if i ≡ 1 mod 3;
c2 if i ≡ 2 mod 3

(4)

for each edge vivi+1, 0 ≤ i ≤ 3m. Then, we have the following theorem.

Theorem 3. For the path P and its two L-edge-colorings f0 and ft defined above, every
reconfiguration sequence between f0 and ft requires length Ω(n2), where n is the number
of vertices in P .

Proof. For an L-edge-coloring f of P and an internal vertex vi, 1 ≤ i ≤ 3m, we define the
sign s(f, vi) of vi on f , as follows:

s(f, vi) =
{

+1 if
(
f(vi−1vi), f(vivi+1)

)
∈ {(c1, c2), (c2, c3), (c3, c1)};

−1 if
(
f(vi−1vi), f(vivi+1)

)
∈ {(c3, c2), (c2, c1), (c1, c3)}.

Therefore, for all internal vertices vi, 1 ≤ i ≤ 3m, we have s(f0, vi) = −1 and s(ft, vi) =
+1. We represent an L-edge-coloring f of P by a sign sequence S(f) =

(
s(f, v1), s(f, v2),

(a) f0

c1c2 c3c2c3 c1 c2 c1c1 c2c3 c3 c3

v1v0 v2 v3 v3m v3m+1

(b) ft

c2c1 c3c1c3 c2 c1 c2c2 c1c3 c3 c3

v1v0 v2 v3 v3m v3m+1

...

...

Fig. 8. Two L-edge-colorings f0 and ft of the path P .

11

. . . , s(f, v3m)
)

which consists of signs of the vertices vi, 1 ≤ i ≤ 3m. Then, f0 is represented
by

S(f0) = (−1,−1, . . . ,−1), (5)

and ft is represented by
S(ft) = (+1, +1, . . . ,+1). (6)

Note that there are more than one L-edge-colorings of P which correspond to the same
sign sequence. However, as a necessary condition, any reconfiguration sequence between
f0 and ft is required to transform S(f0) into S(ft). For an L-edge-coloring f of P , we
denote by n+(f) and n−(f) the numbers of “+1”s and “−1”s in the sign sequence S(f),
respectively. Clearly n+(f)+n−(f) = 3m, and hence it suffices to consider n+(f) and the
placement of “+1”s in S(f).

We now analyze a “recolor step” from the viewpoint of sign sequences. Consider any
two adjacent L-edge-colorings f and f ′ of P , and let vivi+1 be the edge which is recolored
between f and f ′. Note that s(f, v) = s(f ′, v) if v is neither vi nor vi+1. This recolor step
can be classified into the following two types (a) and (b).

(a) vivi+1 is either v0v1 or v3mv3m+1

Consider the case vivi+1 = v0v1. (The other case is similar.) Since f(v1v2) = f ′(v1v2)
and all the edges of P have the same list {c1, c2, c3}, f(v0v1) and f ′(v0v1) are the remaining
two colors in {c1, c2, c3} \ {f(v1v2)}. Thus, it is easy to see that s(f ′, v1) = −s(f, v1).
Therefore, we have

n+(f ′) =
{

n+(f) + 1 if s(f, v1) = −1;
n+(f) − 1 if s(f, v1) = +1.

(b) vivi+1 is neither v0v1 nor v3mv3m+1

In this case, there are two edges vi−1vi and vi+1vi+2 which are adjacent with vivi+1.
Since all the edges of P have the same list {c1, c2, c3}, both vi−1vi and vi+1vi+2 must
be colored with the same color; otherwise, we cannot recolor vivi+1. Then, vi and vi+1

have different signs, that is, s(f, vi) = −s(f, vi+1) and s(f ′, vi) = −s(f ′, vi+1). On the
other hand, it is easy to see that the recolor step swaps the signs of vi and vi+1, that is,
s(f ′, vi) = −s(f, vi) and s(f ′, vi+1) = −s(f, vi+1). We thus have n+(f) = n+(f ′) although
S(f) ̸= S(f ′). From the viewpoint of the “+1”s’ placement, only one “+1” was shifted to
the right (from vi to vi+1) if s(f, vi) = +1; otherwise, to the left.

By Eqs. (5) and (6) any reconfiguration sequence between f0 and ft is required to
increase the number of “+1”s by recolor steps of Type (a) and to deliver “+1”s from
either v1 or v3m to the vertices vi, 1 ≤ i ≤ 3m, by recolor steps of Type (b). Since one
recolor step of Type (b) can shift one “+1” only to its adjacent vertex, the number of
recolor steps of Type (b) required for delivering one “+1” from either v1 or v3m to a
vertex vi, 1 ≤ i ≤ 3m, is at least

min{dist(v1, vi), dist(v3m, vi)} = min{i − 1, 3m − i},

where dist(v, vi) is the number of edges between v and vi. Note that these recolor steps
of Type (b) are not necessarily executed consecutively, but they must be executed in any

12

reconfiguration sequence for delivering one “+1” to vi. The total number of recolor steps
of both types to transform S(f0) into S(ft) is thus at least

3m∑
i=1

(
1 + min{i − 1, 3m − i}

)
= Ω(n2).

Therefore, any reconfiguration sequence between f0 and ft is of length Ω(n2).
This completes the proof of Theorem 3. ⊓⊔

4 Concluding Remarks

A reconfiguration sequence can be represented by a sequence of “recolor steps” (e, c),
where a pair (e, c) denotes one recolor step which recolors an edge e of a tree T to some
color c ∈ L(e). Let N = n +

∑
e∈E(T) |L(e)|, where n is the number of vertices in T , then

N denotes the input size. It is easy to see that our algorithm in Section 3.1 can be easily
implemented so that it runs in time O(nN): the algorithm stores and computes a sequence
of recolor steps (e, c) together with only the current L-edge-coloring of T ; then, each step
of the algorithm can be executed in time O(N), since we recolor each edge e of T at most
once and hence the list L(e) is checked at most once. Since there are (n − 1) steps, the
algorithm takes time O(nN) in total. Remember that |L(e)| = 3 for all edges e of the path
P in Section 3.2. Then, our algorithm takes time O(n2) to find a reconfiguration sequence
between the two L-edge-colorings f0 and ft defined by Eqs. (3) and (4), respectively. On
the other hand, Theorem 3 suggests that it is difficult to improve the time-complexity of
the algorithm if we wish to find an actual reconfiguration sequence explicitly.

One may expect that our sufficient condition for trees holds also for some larger classes
of graphs, such as bipartite graphs, bounded treewidth graphs, etc. However, consider the
following even-length cycle, which is bipartite and whose treewidth is 2. For an even integer
m, let C be the cycle of 3m edges obtained by identifying the edge v0v1 with the edge
v3mv3m+1 of P in Section 3.2, and let f0 and ft be L-edge-colorings of C defined similarly
as in Eqs. (3) and (4), respectively. (See also Fig. 9.) Then, we cannot recolor any edge in

c1

c2

c3

c2

c3

c1

c1

c3

c2

...

...

(a) f0 (b) ft

c2

c1

c3

c1

c3

c2

c2

c3

c1

...

...

Fig. 9. Two L-edge-colorings f0 and ft of even-length cycle C.

13

the cycle, and hence f0 and ft are not connected even though |L(e)| = max{d(v), d(w)}+1
holds for each edge e = vw.

Acknowledgments

We thank Martin Demaine of MIT and the Algorithms Research Group of Université Libre
de Bruxelles, especially Jean Cardinal and Raphaël Jungers, for fruitful discussions.

References

1. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science 410,
5215–5226 (2009)

2. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings of
multigraphs. J. Combinatorial Theory, Series B 71, 184–204 (1997)

3. Călinescu, G., Dumitrescu, A., Pach, J.: Reconfigurations in graphs and grids. SIAM
J. Discrete Mathematics 22, 124–138 (2008)

4. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colourings.
In: Proc. of IWOCA 2008, pp. 182–196 (2008)

5. Fujino, T., Zhou, X., Nishizeki, T.: List edge-colorings of series-parallel graphs. IEICE
Trans. Fundamentals E86-A, 1034–1045 (2003)

6. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity
of Boolean satisfiability: computational and structural dichotomies. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 346–357.
Springer, Heidelberg (2006)

7. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other
problems through the nondeterministic constraint logic model of computation. Theo-
retical Computer Science 343, 72–96 (2005)

8. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R.,
Uno, Y.: On the complexity of reconfiguration problems. In: Hong, S., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 28–39. Springer, Heidelberg
(2008)

9. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph.
In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol.
5664, pp. 375–386. Springer, Heidelberg (2009)

10. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience, New York (1995)
11. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths and

independent sets. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS vol.
6460, pp. 56–67. Springer, Heidelberg (2011)

12. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Computer and System Sciences 4, 177–192 (1970)

14

