47 research outputs found

    Violation of the equivalence principle from light scalar fields: from Dark Matter candidates to scalarized black holes

    Full text link
    Tensor-scalar theory is a wide class of alternative theory of gravitation that can be motivated by higher dimensional theories, by models of dark matter or dark ernergy. In the general case, the scalar field will couple non-universally to matter producing a violation of the equivalence principle. In this communication, we review a microscopic model of scalar/matter coupling and its observable consequences in terms of universality of free fall, of frequencies comparison and of redshifts tests. We then focus on two models: (i) a model of ultralight scalar dark matter and (ii) a model of scalarized black hole in our Galactic Center. For both these models, we present constraints using recent measurements: atomic clocks comparisons, universality of free fall measurements, measurement of the relativistic redshift with the short period star S0-2 orbiting the supermassive black hole in our Galactic Center.Comment: 8 pages, 1 figure, contribution to the 2019 Gravitation session of the 54th Rencontres de Morion

    Known unknowns: assessing the impact of instrumental calibration uncertainty on LISA science

    Get PDF
    The primary scientific results of the future space-based gravitational wave interferometer LISA will come from the parameter inference of a large variety of gravitational wave sources. However, the presence of calibration errors could potentially degrade the measurement precision of the system parameters. Here, we assess the impact of calibration uncertainties on parameter estimation for individual sources, focusing on massive black holes, extreme-mass-ratio inspirals (EMRIs), galactic binaries, and stellar origin black hole binaries. Using a Fisher matrix formalism, we investigate how the measurement precision of source parameters degrades as a function of the size of the assumed calibration uncertainties. If we require that parameter measurements are degraded by no more than a factor of two relative to their value in the absence of calibration error, we find that calibration errors should be smaller than a few tenths of a percent in amplitude and 10−310^{-3} in phase. We also investigate the possibility of using verification binaries and EMRIs to constrain calibration uncertainties. Verification binaries can constrain amplitude calibration uncertainties at the level of a few percent, while both source types can provide constrain phase calibration at the level of a few×10−2\times10^{-2}

    : P

    No full text
    International audienceThe GANIL facility consists of three successive cyclotrons. The tuning of these cyclotrons and of the transfer beam lines isachieved in about 24 hours. Reducing this setting time would enable to increase the time allocated to physics experiments.New tools are realized for automatic beam tuning. These tools are expected to make the tuning easier, shorter and morereproducible

    : P

    Get PDF
    International audienceThe GANIL facility consists of three successive cyclotrons. The tuning of these cyclotrons and of the transfer beam lines isachieved in about 24 hours. Reducing this setting time would enable to increase the time allocated to physics experiments.New tools are realized for automatic beam tuning. These tools are expected to make the tuning easier, shorter and morereproducible

    Beam dynamics studies in SPIRAL II LINAC

    Get PDF
    ACCInternational audienceThe proposed LINAG driver for the SPIRAL 2 project aims to accelerate a 5-mA D+ beam up to 20 A.MeV and 1-mA beam for q/A=1/3 up to 14.5 A.MeV. It is acontinuous wave regime (cw), designed for maximum efficiency in the transmission of intense beams. It consists of an injector (two ECR sources + a Radio Frequency Quadrupole) followed by a superconducting section based on an array of independently phased cavities. This paper presents beams dynamics studies associated to the LINAG driver. End-to-end simulations (low-energy beam lines, RFQ, medium-energy beam line, SC linac) are shown

    Spectropolarimetric observations of the transiting planetary system of the K dwarf HD 189733

    Full text link
    With a Jupiter-mass planet orbiting at a distance of only 0.031 AU, the active K2 dwarf HD 189733 is a potential candidate in which to study the magnetospheric interactions of a cool star with its recently-discovered close-orbiting giant planet. We decided to explore the strength and topology of the large-scale magnetosphere of HD 189733, as a future benchmark for quantitative studies for models of the star/planet magnetic interactions. To this end, we used ESPaDOnS, the new generation spectropolarimeter at the Canada-France-Hawaii 3.6m telescope, to look for Zeeman circular polarisation signatures in the line profiles of HD 189733 in 2006 June and August. Zeeman signatures in the line profiles of HD 189733 are clearly detected in all spectra, demonstrating that a field is indeed present at the surface of the star. The Zeeman signatures are not modulated with the planet's orbital period but apparently vary with the stellar rotation cycle. The reconstructed large-scale magnetic field, whose strength reaches a few tens of G, is significantly more complex than that of the Sun; it involves in particular a significant toroidal component and contributions from magnetic multipoles of order up to 5. The CaII H & K lines clearly feature core emission, whose intensity is apparently varying mostly with rotation phase. Our data suggest that the photosphere and magnetic field of HD 189733 are sheared by a significant amount of differential rotation. Our initial study confirms that HD 189733 is an optimal target for investigating activity enhancements induced by closely orbiting planets. More data are needed, densely covering both the orbital and rotation cycles, to investigate whether and how much the planet contributes to the overall activity level of HD 189733.Comment: Accepted in Astronomy and Astrophysics, 12 page

    Discovery of a weak magnetic field in the photosphere of the single giant Pollux

    Full text link
    Aims: We observe the nearby, weakly-active single giant, Pollux, in order to directly study and infer the nature of its magnetic field. Methods: We used the new generation spectropolarimeters ESPaDOnS and NARVAL to observe and detect circular polarization within the photospheric absorption lines of Pollux. Our observations span 18 months from 2007-2009. We treated the spectropolarimetric data using the Least-Squares Deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measured the classical activity indicator S-index for the Ca H&K lines, and the stellar radial velocity (RV). Results: We have unambiguously detected a weak Stokes V signal in the spectral lines of Pollux, and measured the related surface-averaged longitudinal magnetic field Bl. The longitudinal field averaged over the span of the observations is below one gauss. Our data suggest variations of the longitudinal magnetic field, but no significant variation of the S-index. We observe variations of RV which are qualitatively consistent with the published ephemeris for a proposed exoplanet orbiting Pollux. The observed variations of Bl appear to mimic those of RV, but additional data for this relationship to be established. Using evolutionary models including the effects of rotation, we derive the mass of Pollux and we discuss its evolutionary status and the origin of its magnetic field. Conclusions: This work presents the first direct detection of the magnetic field of Pollux, and demonstrates that ESPaDOnS and NARVAL are capable of obtaining sub-G measurements of the surface-averaged longitudinal magnetic field of giant stars, and of directly studying the relationships between magnetic activity, stellar evolution and planet hosting of these stars.Comment: 8 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Dynamic behaviour of drystone retaining walls: shaking table scaled-down tests

    No full text
    International audienceIn this paper, an experimental study aiming at understanding the seismic behaviour of dry stone retaining walls is presented. Harmonic shaking table tests have been carried out on scaled-down dry-joint retaining walls involving parallelepiped bricks. It is found that a thicker wall is more resistant and that a given retaining wall is less sensitive to higher frequencies. For those higher frequencies, the walls accept larger displacements before collapsing. The displacements start to occur from a given threshold, which depends on the wall geometry but not on the frequency of the base motion. The typical toppling failure is observed for slender wall and/or low frequency inputs. For less slender walls or higher frequency inputs, walls experience local sliding failures until the complete collapse of the system. The acceleration at failure reported during the dynamic tests have been compared to the corresponding pseudo-static resistance, enabling a conservative estimate of the seismic behaviour coefficient for pseudo-static analysis of this class of retaining walls. This novel experimental dataset is aimed to serve as a validating framework for future numerical or analytical tools in the field
    corecore