216 research outputs found

    Symbolic Shareholder Democracy:Toward a Behavioral Understanding of the Role of Shareholder Voting in CEO Dismissals

    Get PDF
    We investigate the effect of expressive shareholder dissent voting, in which shareholders use their votes symbolically to express their discontent with management, on subsequent chief executive officer (CEO) dismissals. Using the routine but highly symbolic executive board discharge proposal voted on at the annual shareholder meetings of German firms, we argue that the board of directors understands these votes as a "vote of confidence in management" that challenges the CEO's mandate to lead the firm. Arguing that board chairs are uniquely positioned to take up the stance of a steward of the firm and its leadership, we examine how independent and family board chairs moderate the board's response to expressive voting dissent. Using a sample of German public firms over the period 2008-2015, we find that expressive voting dissent increases the chance of CEO dismissal increasingly with the level of dissent expressed. Contrary to prevailing agency theoretical expectations, we do not find that independent chairs are more responsive to expressive voting dissent, nor that this relationship is strengthened by the degree of minority institutional investor ownership of the firm. Consistent with the symbolic perspective on shareholder voting that we seek to develop, however, we find that family chairs are more likely to lead the board to dismiss the CEO due to the intrinsic disvalue they incur from symbolic leadership legitimacy challenges in their firms, and that the positive effect of having a family chair on the dissent induced chance of CEO dismissal is strengthened by the level of family ownership in the firm

    Gender differences in pay levels : an examination of the compensation of university presidents

    Get PDF
    Our paper studies how gender and organizational status affect a university president’s compensation. Similar to previous findings, we hypothesize that women will receive less pay than men. However, we go beyond a dyadic view of individual differences to examine gender’s impact on compensation, and we explicate the importance of institutional forces in understanding the gender pay gap. In doing so, we rely on organizational status and hypothesize that the gender pay gap will be less pronounced as a university’s status rises. Although we find that the gender pay gap persists within the university president context, we also find that as a university’s status rises, the pay gap declines. Moreover, our findings show that the gender pay gap disappears at higher-status universities. Hence, accounting for where the glass ceiling is broken is an important consideration in understanding the gender pay gap. In sum, by integrating a broader institutional perspective to explain gender differences in pay levels, our paper demonstrates the importance of contextualizing gender to better understand its effects on compensation.https://pubsonline.informs.org/journal/orschj2019Human Resource Managemen

    The RNA modification database, RNAMDB: 2011 update

    Get PDF
    Since its inception in 1994, The RNA Modification Database (RNAMDB, http://rna-mdb.cas.albany.edu/RNAmods/) has served as a focal point for information pertaining to naturally occurring RNA modifications. In its current state, the database employs an easy-to-use, searchable interface for obtaining detailed data on the 109 currently known RNA modifications. Each entry provides the chemical structure, common name and symbol, elemental composition and mass, CA registry numbers and index name, phylogenetic source, type of RNA species in which it is found, and references to the first reported structure determination and synthesis. Though newly transferred in its entirety to The RNA Institute, the RNAMDB continues to grow with two notable additions, agmatidine and 8-methyladenosine, appended in the last year. The RNA Modification Database is staying up-to-date with significant improvements being prepared for inclusion within the next year and the following year. The expanded future role of The RNA Modification Database will be to serve as a primary information portal for researchers across the entire spectrum of RNA-related research

    Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14

    Get PDF
    The modified nucleosides N2-methylguanosine and N22-dimethylguanosine in transfer RNA occur at five positions in the D and anticodon arms, and at positions G6 and G7 in the acceptor stem. Trm1 and Trm11 enzymes are known to be responsible for several of the D/anticodon arm modifications, but methylases catalyzing post-transcriptional m2G synthesis in the acceptor stem are uncharacterized. Here, we report that the MJ0438 gene from Methanocaldococcus jannaschii encodes a novel S-adenosylmethionine-dependent methyltransferase, now identified as Trm14, which generates m2G at position 6 in tRNACys. The 381 amino acid Trm14 protein possesses a canonical RNA recognition THUMP domain at the amino terminus, followed by a γ-class Rossmann fold amino-methyltransferase catalytic domain featuring the signature NPPY active site motif. Trm14 is associated with cluster of orthologous groups (COG) 0116, and most closely resembles the m2G10 tRNA methylase Trm11. Phylogenetic analysis reveals a canonical archaeal/bacterial evolutionary separation with 20–30% sequence identities between the two branches, but it is likely that the detailed functions of COG 0116 enzymes differ between the archaeal and bacterial domains. In the archaeal branch, the protein is found exclusively in thermophiles. More distantly related Trm14 homologs were also identified in eukaryotes known to possess the m2G6 tRNA modification

    Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes

    Get PDF
    Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA([Ser]Sec) as substrates to generate selenocysteyl-tRNA([Ser]Sec). Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA([Ser]Sec), seryl-tRNA synthetase, O-phosphoseryl-tRNA([Ser]Sec) kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA([Ser]Sec) kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins

    Imaging of the Inner Zone of Blast Furnaces Using MuonRadiography: The BLEMAB Project

    Get PDF
    The aim of the BLEMAB project (BLast furnace stack density Estimation through online Muons ABsorption measurements) is the application of muon radiography techniques, to image a blast furnace’s inner zone. In particular, the goal of the study is to characterize the geometry and size of the so-called “cohesive zone”, i.e., the spatial region where the slowly downward-moving material begins to soften and melt, which plays such an important role in the performance of the blast furnace itself. Thanks to the high penetration power of natural cosmic-ray muon radiation, muon transmission radiography could be an appropriate non invasive methodology for the imaging of large high-density structures such as a blast furnace, whose linear dimensions can be up to a few tens of meters. A state-of-the-art muon tracking system is currently in development and will be installed at a blast furnace on the ArcelorMittal site in Bremen (Germany), where it will collect data for a period of various months. In this paper, the status of the project and the expectations based on preliminary simulations are presented and briefly discussed

    The BLEMAB European project: Muon radiography as an imaging tool in the industrial field

    Get PDF
    The European project called BLEMAB (BLast furnace stack density Estimation through on-line Muons ABsorption measurements), provides for the application of the muon radiography technique in the industrial environment. The project represents a non-invasive way of monitoring a blast furnace and in particular aims to study the geometric and density development of the so-called “cohesive zone”, which is important for the performance of the blast furnace itself. The installation of the detectors is expected in 2022 at the ArcelorMittal site in Bremen (Germany). This paper describes the status of the project, the experimental setup and the first results obtained with preliminary simulations. © 2022 Societa Italiana di Fisica. All rights reserved

    An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SelB is the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. In archaea, only a subset of methanogens utilizes selenocysteine and encodes archaeal SelB (aSelB). A SelB-like (aSelBL) homolog has previously been identified in an archaeon that does not encode selenosysteine, and has been proposed to be a pyrrolysyl-tRNA-specific elongation factor (EF-Pyl). However, elongation factor EF-Tu is capable of binding archaeal Pyl-tRNA in bacteria, suggesting the archaeal ortholog EF1A may also be capable of delivering Pyl-tRNA to the ribosome without the need of a specialized factor.</p> <p>Results</p> <p>We have phylogenetically characterized the aSelB and aSelBL families in archaea. We find the distribution of aSelBL to be wider than both selenocysteine and pyrrolysine usage. The aSelBLs also lack the carboxy terminal domain usually involved in recognition of the selenocysteine insertion sequence in the target mRNA. While most aSelBL-encoding archaea are methanogenic Euryarchaea, we also find aSelBL representatives in Sulfolobales and Thermoproteales of Crenarchaea, and in the recently identified phylum Thaumarchaea, suggesting that aSelBL evolution has involved horizontal gene transfer and/or parallel loss. Severe disruption of the GTPase domain suggests that some family members may employ a hitherto unknown mechanism of nucleotide hydrolysis, or have lost their GTPase ability altogether. However, patterns of sequence conservation indicate that aSelBL is still capable of binding the ribosome and aminoacyl-tRNA.</p> <p>Conclusions</p> <p>Although it is closely related to SelB, aSelBL appears unlikely to either bind selenocysteinyl-tRNA or function as a classical GTP hydrolyzing elongation factor. We propose that following duplication of aSelB, the resultant aSelBL was recruited for binding another aminoacyl-tRNA. In bacteria, aminoacylation with selenocysteine is essential for efficient thermodynamic coupling of SelB binding to tRNA and GTP. Therefore, change in tRNA specificity of aSelBL could have disrupted its GTPase cycle, leading to relaxation of selective pressure on the GTPase domain and explaining its apparent degradation. While the specific role of aSelBL is yet to be experimentally tested, its broad phylogenetic distribution, surpassing that of aSelB, indicates its importance.</p

    Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase

    Get PDF
    In all organisms, aminoacyl tRNA synthetases covalently attach amino acids to their cognate tRNAs. Many eukaryotic tRNA synthetases have acquired appended domains, whose origin, structure and function are poorly understood. The N-terminal appended domain (NTD) of glutaminyl-tRNA synthetase (GlnRS) is intriguing since GlnRS is primarily a eukaryotic enzyme, whereas in other kingdoms Gln-tRNAGln is primarily synthesized by first forming Glu-tRNAGln, followed by conversion to Gln-tRNAGln by a tRNA-dependent amidotransferase. We report a functional and structural analysis of the NTD of Saccharomyces cerevisiae GlnRS, Gln4. Yeast mutants lacking the NTD exhibit growth defects, and Gln4 lacking the NTD has reduced complementarity for tRNAGln and glutamine. The 187-amino acid Gln4 NTD, crystallized and solved at 2.3 Å resolution, consists of two subdomains, each exhibiting an extraordinary structural resemblance to adjacent tRNA specificity-determining domains in the GatB subunit of the GatCAB amidotransferase, which forms Gln-tRNAGln. These subdomains are connected by an apparent hinge comprised of conserved residues. Mutation of these amino acids produces Gln4 variants with reduced affinity for tRNAGln, consistent with a hinge-closing mechanism proposed for GatB recognition of tRNA. Our results suggest a possible origin and function of the NTD that would link the phylogenetically diverse mechanisms of Gln-tRNAGln synthesis
    corecore