225 research outputs found

    Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity

    Get PDF
    Background and Objective: MicroRNA-146a (miR-146a) is a small noncoding RNA that plays a critical role in the negative regulation of the innate immune response, and the dysregulation of miR-146a has been associated with several inflammatory disorders. In generalized aggressive periodontitis (GAgP) the degree of clinical inflammation appears to be similar to that of chronic periodontitis, and, in this situation, age of onset and family history are important additional criteria for diagnosis. This study was performed to evaluate the level of miR-146a expressed in gingival tissues of patients with GAgP and its association with disease severity. Material and Methods: Gingival samples from 18 patients with GAgP and 10 healthy subjects were collected and the level of miR-146a and its targets, including necrosis factor-alpha, interleukin-1beta, and interleukin-6, were assessed using real-time PCR. Clinical parameters, including probing depth and clinical attachment loss, were measured and their correlations with the level of miR-146a were determined. Results: Our results demonstrated an elevation in the level of miR-146a expressed in patients with GAgP compared with healthy controls (P <.001), which was directly associated with disease severity (P <.05). Overexpression of miR-146a was accompanied by a reduction in the levels of pro-inflammatory cytokines. Conclusions: Our findings suggest that there is an association between miR-146a and GAgP and imply that miR-146a may serve as an indicator of periodontal disease severity. However, further studies and additional information are required to confirm this relationship and the precise role of miR-146a in the development and/or progression of periodontitis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Lt

    Thermal inactivation and conformational lock studies on glucose oxidase

    Get PDF
    In this study, the dissociative thermal inactivation and conformational lock theories are applied for the homodimeric enzyme glucose oxidase (GOD) in order to analyze its structure. For this purpose, the rate of activity reduction of glucose oxidase is studied at various temperatures using b-D-glucose as the substrate by incubation of enzyme at various temperatures in the wide range between 40 and 70 �C using UV–Vis spectrophotometry. It was observed that in the two ranges of temperatures, the enzyme has two different forms. In relatively low temperatures, the enzyme is in its dimeric state and has normal activity. In high temperatures, the activity almost disappears and it aggregates. The above achievements are confirmed by dynamic light scattering. The experimental parameter ‘‘n’’ as the obvious number of conformational locks at the dimer interface of glucose oxidase is obtained by kinetic data, and the value is near to two. To confirm the above results, the X-ray crystallography structure of the enzyme, GOD (pdb, 1gal), was also studied. The secondary and tertiary structures of the enzyme to track the thermal inactivation were studied by circular dichroism and fluorescence spectroscopy, respectively. We proposed a mechanism model for thermal inactivation of GOD based on the absence of the monomeric form of the enzyme by circular dichroism and fluorescence spectroscopy

    A cost-of-illness analysis of β-Thalassaemia major in children in Sri Lanka - experience from a tertiary level teaching hospital

    Get PDF
    Background Sri Lanka has a high prevalence of β-thalassaemia major. Clinical management is complex and long-term and includes regular blood transfusion and iron chelation therapy. The economic burden of β-thalassaemia for the Sri Lankan healthcare system and households is currently unknown. Methods A prevalence-based, cost-of-illness study was conducted on the Thalassaemia Unit, Department of Paediatrics, Kandy Teaching Hospital, Sri Lanka. Data were collected from clinical records, consultations with the head of the blood bank and a consultant paediatrician directly involved with the care of patients, alongside structured interviews with families to gather data on the personal costs incurred such as those for travel. Results Thirty-four children aged 2–17 years with transfusion dependent thalassaemia major and their parent/guardian were included in the study. The total average cost per patient year to the hospital was US2601ofwhichUS 2601 of which US 2092 were direct costs and US509wereoverheadcosts.MeanhouseholdexpenditurewasUS 509 were overhead costs. Mean household expenditure was US 206 per year with food and transport per transfusion (US7.57andUS 7.57 and US 4.26 respectively) being the highest cost items. Nine (26.5%) families experienced catastrophic levels of healthcare expenditure (> 10% of income) in the care of their affected child. The poorest households were the most likely to experience such levels of expenditure. Conclusions β-thalassaemia major poses a significant economic burden on health services and the families of affected children in Sri Lanka. Greater support is needed for the high proportion of families that suffer catastrophic out-of-pocket costs

    Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester

    Get PDF
    Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ultsonch.2017.08.004.The ultrasound-assisted hydrolysis of aspirin methyl ester (AME) was investigated using immobilized Candida antarctica lipase B (CALB) (1%) in the presence of solvents like triolein, chloroform (CHCl3) and dichloromethane (DCM). The effect of ultrasound and the role of water on the conversion rates have also been investigated. Proton nuclear magnetic resonance spectroscopic (1H NMR) was chosen to calculate hydrolysis convertion rates. We observed that lipase-ultrasound assisted hydrolysis of AME in the presence of triolein and water showed the highest hydrolysis conversion rate (65.3%). Herein low water amount played an important role as a nucleophile being crucial for the hydrolysis yields obtained. Lipase activity was affected by the conjugated action of ultrasound and solvents (35.75% of decrease), however not disturbing its hydrolytic efficiency. It was demonstrated that lipase is able to hydrolyse AME to methyl 2-hydroxy benzoate (methyl salicylate), which applications include fragrance agents in food, beverages and cosmetics, or analgesic agent in liniments.All authors gratefully acknowledge the financial support provided by International Joint Research Laboratory for Textile and Fibre Bioprocesses at Jiangnan University. The authors are also thankful to the Department of Oils, Oleochemicals and Surfactants technology, Institute of Chemical Technology, Mumbai, India and to the Bioprocess and Bio nanotechnology Research Group (BBRG) of University of Minho. Authors would like also to acknowledge the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte and to the Fundamental Research Funds for the Central Universities (No. JUSRP51622 A and No. JUSRP115A03), and to the Jiangsu Province Scientific Research Innovation Project for Academic Graduate Students in 2016 (No. KYLX16_0788).info:eu-repo/semantics/publishedVersio

    Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure

    Get PDF
    Phosphate is an essential nutrient for plant growth and is acquired from the environment and distributed within the plant in part through the action of phosphate transporters of the PHT1 family. Foxtail millet (Setaria italica) is an orphan crop essential to the food security of many small farmers in Asia and Africa and is a model system for other millets. A novel Agrobacterium-mediated transformation and direct plant regeneration procedure was developed from shoot apex explants and used to downregulate expression of 3 members of the PHT1 phosphate transporter family SiPHT1;2 SiPHT1;3 and SiPHT1;4. Transformants were recovered with close to 10% efficiency. The downregulation of individual transporters was confirmed by RT-PCR. Downregulation of individual transporters significantly reduced the total and inorganic P contents in shoot and root tissues and increased the number of lateral roots and root hairs showing they have non-redundant roles. Downregulation of SiPHT1;2 had the strongest effect on total and inorganic P in shoot and root tissues. Complementation experiments in S. cerevisiae provide evidence for the ability of SiPHT1;1, 1;2, 1;3, 1;7 and 1;8 to function as high affinity Pi transporters. This work will aid development of improved millet varieties for global food security
    corecore