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A B S T R A C T

The ultrasound-assisted hydrolysis of aspirin methyl ester (AME) was investigated using immobilized Candida
antarctica lipase B (CALB) (1%) in the presence of solvents like triolein, chloroform (CHCl3) and di-
chloromethane (DCM). The effect of ultrasound and the role of water on the conversion rates have also been
investigated. Proton nuclear magnetic resonance spectroscopic (1H NMR) was chosen to calculate hydrolysis
convertion rates.

We observed that lipase-ultrasound assisted hydrolysis of AME in the presence of triolein and water showed
the highest hydrolysis conversion rate (65.3%). Herein low water amount played an important role as a nu-
cleophile being crucial for the hydrolysis yields obtained. Lipase activity was affected by the conjugated action of
ultrasound and solvents (35.75% of decrease), however not disturbing its hydrolytic efficiency. It was demon-
strated that lipase is able to hydrolyse AME to methyl 2-hydroxy benzoate (methyl salicylate), which applica-
tions include fragrance agents in food, beverages and cosmetics, or analgesic agent in liniments.

1. Introduction

Aspirin methyl ester (AME) (methyl 2-acetoxybenzoate) developed
and patented by Thorpe in 1918, is one of the safest, simplest and least
expensive anti-inflammatory aspirin prodrugs [1]. AME was synthe-
sized by temporarily masking the functional group of aspirin, car-
boxylic acid, which was found to have lower gastric ulcerogenic activity
as compared to aspirin [2,3]. AME can be chemical or enzymatically
hydrolysed to methyl 2-hydroxy benzoate. This compound, also known
as methyl salicylate, can be used as a fragrance in food, cosmetics,
toiletries, having also application as analgesic agent in liniments [4].
Chemical catalysis can be applied for AME hydrolysis however leading
to non-specific byproducts and requiring high reaction temperature and
pressure. As reported by others, enzyme catalyzed hydrolysis has been
presented has an alternative to the chemical route since it is carried out
under mild reaction conditions, minimizing the formation of undesir-
able by-products. Desai et al. reported the chemoselective hydrolysis of
methyl 2-acetoxybenzoate (AME) through batch and fix reactor using

free and entrapped esterase in K-carrageenan beads [5]. The im-
mobilized catalysts generally possess specificity, higher catalytic ac-
tivity and greater thermal stability. The environmental impact is re-
duced since immobilization allows the reuse of the catalysts, making
them eco-friendly and less expensive [6]. Among the variety of enzymes
with industrial applications, lipases have shown a vast potential in
biotechnological and industrial scenarios. Lipases from different
sources are widely used in different biochemical reactions such as es-
terification, transesterification, hydrolysis, alcoholysis, aminolysis,
acidolysis, etc [7–10]. The hydrolysis of esters in the presence of water
is a chemical reaction in which bond cleavage is affected by water to
produce acid and alcohol, where water acts as nucleophile [11,12].

Among all lipases, Lipase B from Candida antarctica (CALB) is widely
used as biocatalyst due to its high stereoselectivity, high activity, broad
substrate specificity, high thermostability and conformational stability
in hydrophilic and hydrophobic environments [13–17]. Nevertheless,
low reaction rates have been observed which imply high processing
costs. Several attemptes have been made to improve enzyme reaction
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rates using ultrasound, microwave, ionic liquids and supercritical
fluids. Ultrasound mainly contributes to alter the temperature and
pressure of the microenvironment as a result of the cavitational effect
[18]. Mixing, shearing and mass transfer increase by ultrasound effect
lead to high hydrolsysis conversion rates, improving strongly the en-
zymatic reactions [19–21]. Enzyme-ultrasound assisted reactions pre-
sent several advantages compared with conventional methods namely a
decrease of the reaction time, a reduction of the amount of reagents
used, a higher yield, and chemo-, region and stereoselectivities of re-
actions that normally would not occur under normal conditions
[18,22–25].

The addition of solvents which can act as a suitable reaction
medium for enzyme catalyzed reactions is another way to overcome
lipase hydrolysis limitations. Together with ultrasounds, it will improve
the mass transfer and ensure sufficient mixing and emulsification of the
two immiscible layers [26].

In the present work, we investigated for the first time the hydrolysis
of aspirin methyl ester with immobilized lipase B from Candida ant-
arctica (CALB) in the presence of different solvents such as triolein,
chloroform (CHCl3) and dichloromethane (DCM). The effect of ultra-
sound and solvents as well as the role of water in the hydrolysis reac-
tions were studied and compared with their effect in the conventional
approach using a shaker bath with controlled temperature. The hy-
drolysis reaction conversion rates were analyzed by proton nuclear
magnetic resonance (1H NMR) spectroscopy. The effect of ultrasound
on enzyme activity was evaluated and compared with the effect of a
conventional shaker water bath.

2. Materials and methods

2.1. Materials

Fermase CALB™ 10,000, a commercial Candida Antarctica lipase B
(CALB) immobilized on glycidyl methacrylate-ter-divinylbenzene-ter-
ethylene glycol dimethacrylate (particle size of 150–300 μm, pore vo-
lume of 1.32 cm3/g, bulk density of 0.54 g/cm3 and an activity of 8000
propyl laurate units) was obtained as a gift sample from Fermenta
Biotech Ltd., Mumbai, India. Aspirin methyl ester (AME) (purity 98%
+) was obtained from TCI Development Co., Ltd., Shanghai, China.
Glycerol trioleate (Triolein) (purity 98%+), chloroform (CHCl3) (AR,
purity 99%+), dichloromethane (DCM) (AR, purity 99.5%+), phe-
nolphthalein, oleic acid (AR), 2,2,4-trimethyl pentane (isooctane) (90%
+), ethanol (AR, 99.7%+) and n-butanol (AR, 99%+) were received
from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China.

The experimental setup involved the use of a thermostatized water
bath with orbital oscillation (WB) (model STD-134L, Standard Groups
Co., Ltd., Shanghai, China) and an ultrasonic bath (US) (SK5210HP,
Kudos Ultrasonic Instrument Co., Ltd., Shanghai, China) (frequency
53 kHz and a power of 100 W).

2.2. Characterization of sonochemical cavitation reactor

2.2.1. Dosimetric characterization
The dosimetric characterization of ultrasonic bath SK5210HP

(53 kHz, 100 W) followed the methodology referred by other authors
[27,28]. The hydroxyl radicals produced by cavitation were quantified
by conversion of terephthalic acid to 2-hydroxyterephthalic acid [27].
Solutions of 0.3 mM terephthalic acid (TA) were prepared in 0.1 M
sodium phosphate buffer (pH 7.4) and submitted to cavitation during
1 h at 60 °C. The fluorescence of sonicated TA solutions were monitored
by a Multi-mode Microplate Reader Synergy™Mx and Gen5™ purchased
from Biotek Instruments, Inc. (USA) using a wavelength scan con-
firming peak emission at 425 nm from an excitation wavelength at
315 nm. The calibration curve was plotted using standard TA solutions
(0–50 mM) and 0.1 M sodium hydroxide. The hydroxyl radicals were
measured at different points of the reactor considering their geometry

and transducers positioning [29].

2.2.2. Calorimetric characterization
The calorimetric characterization of the ultrasonic bath was based

on the energy measurement during time for several power inputs as it
was published previously by other workers [27,30,31]. The measure-
ments were performed using a Pico Technology TC-08 Analogue to
Digital converter connected to a computer. The TCs were placed in the
same positions used to perform the dosimetric characterization (see
Section 2.2.1). The energy profile was followed using distilled water for
1 h and the corresponding calorific power was determined following
equation:

= × ×E T m C(Δ )/1000ave p

where E is the calculated energy (kJ) to raise the water temperature;
Δave is equal to the difference of the final and initial temperature (K); m
is the mass of the water (kg) and CP is the heat capacity of water
(4186 J kg−1 K−1); the change in temperature (ΔT) was calculated for
each TCs positions and the final value was obtained by the mean of the
five temperature sensors.

2.3. Lipase-catalyzed hydrolysis of aspirin methyl ester in the presence of
different solvents (triolein, chloroform and dichloromethane)

Firstly, 500 mg of AME were dissolved in 5 mL of different solvents
(triolein, CHCl3, or DCM) (see Table S1 of support information). Then,
for each reaction, 1% (v/v) of distilled water was added to the system.

For the conventional approach, 1% (w/v) of immobilized CALB was
added to the reaction mixtures water bath (100 rpm) at 35 °C for 12 h.
For the ultrasound assisted approach a combination of water bath and
ultrasound was applied to study the influence of ultrasound on the
hydrolysis of aspirin methyl ester (see Table S.2). For this, the reaction
was firstly carried out in a water bath for 4 h, then transferred to the
ultrasonic bath for 0.5 h, transferred again to the water bath for 4 h,
and then to the ultrasonic bath for 0.5 h, and finally to the water bath
for 3 h. In all stages the reaction was carried out at 35 °C. The tem-
perature was kept at 35 °C by placing the sample at the center of the
ultrasonic bath, where the amount of hydroxyl radicals is higher and
the temperature is less susceptible to changes. The total reaction time in
ultrasonic bath operating at frequency of 53 kHz, 100 W power rating
and incubated in a and duty cycle of 50% (5 min ON/5 min OFF) was
observed to be 1 h.

Furthermore, to study the role of water on the enzymatic hydrolysis,
batches of hydrolysis reaction without water were also performed for
each set of reactions under the same reaction conditions as described
above. The lipase activity was measured before hydrolysis and at the
end of processing (see details in Scheme 1 of support information).

2.4. NMR characterization

The 1H NMR spectra of the reaction mixtures were obtained by
dissolving the products in 500 μL deuterated chloroform (CDCl3). The
spectra were recorded using a Bruker avance III 400 NMR spectrometer
(Bruker Corporation, Germany), 400 MHz at 25 °C.

2.5. Lipase activity assay

To determine the enzyme activity of the immobilized lipase, 200 mg
of vacuum dried enzyme was added to a vial containing a mixture of
0.32 mL oleic acid, 0.27 mL dry n-butanol in 3 mL dry isooctane and
0.05 mL distilled water. The flask was kept at 30 °C for 60 min with a
shaking speed of 250 rpm. The reaction was stopped by addition of
10 mL methanol and immediately titrated against 0.05 M alcoholic
NaOH and phenolphthalein indicator [32,33]. One unit of enzyme ac-
tivity is defined as 1 mol of oleic acid consumed in reaction per min per
mg of lipase.
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=
× ×

×

Ea V M
E t

Enzyme activity( ) 100

where V represents the difference in volume in mL of NaOH between
the blank and samples which is a measure of oleic acid consumed
during the reaction. M represents the molarity of NaOH in M. E re-
presents the amount of enzyme employed in mg. t represents the time of
reaction in min.

3. Results and discussion

3.1. Hydrolysis conversion rates of aspirin methyl ester (AME)

AME (methyl 2-acetoxybenzoate) was successfully hydrolyzed to
methyl 2-hydroxybenzoate and acetic acid using CALB in the presence
of different solvents. The ultrasound-assisted hydrolysis of AME cata-
lyzed by immobilized CALB was performed and compared with the
conventional method using a water bath. The effect of ultrasound and
the solvents as well as the role of water on the enzymatic hydrolysis of
AME were evaluated.

The 1H NMR technique showed up to be the most appropriated
method to evaluate the reaction conversion rates due to its high accu-
racy. The products (methyl 2-hydroxy benzoate and acetic acid) for-
mation was determined through the 1H NMR spectra which have shown
the shift in the position of aromatic protons of AME during hydrolysis
reaction. The 1H NMR spectra of AME and the corresponding products
of hydrolysis (methyl 2-hydroxy benzoate and acetic acid) are shown in
Figs. 1 and 2.

In Fig. 2, the peaks observed in the range of 7–8.1 ppm correspond
to the aromatic protons of AME which are shown as signs i, j, k and m,
whereas for the aromatic protons of the product the shift in the range of
6.8–7.9 ppm are indicated as signs i′, j′, k′ and m′. The hydrolysis
conversion rates were calculated using the equation in Scheme 1.

The data also confirm the selective cleavage of the acetic acid unit.
This is established by the intensity decrease of the peak n and by the
appearance of a small peak at 10.7 ppm corresponding to the OH.

The conversion rates for all the reaction batches are given in Table 1
(the 1H NMR spectra of AME and correspondent hydrolysis products for
all remaining reaction batches are given in supplementary data: Fig.
S1–S13).

3.1.1. Comparative effect of different solvents on the hydrolysis conversion
rate of aspirin methyl ester (AME)

The performance of hydrolysis reactions using organic solvents as
reaction medium under the influence of ultrasound can synergistically
enhance the mass transfer phenomenum and increase conversion rates.
Ultrasound at low intensities enhance the medium motion, upholding
the reagent flux to the active site of the enzyme; a more volatile solvent
enhances the cavitational effect, being able to favor the reaction.
Though, the intensity and irradiation time can cause the inactivation of
the enzyme through cavitational collapse [20,34,35].

The influence of solvents such as triolein, CHCl3 and DCM on the
hydrolysis conversion rates of AME with immobilized lipase was in-
vestigated and the results are shown in Table 1. The solvents were se-
lected considering different parameters such as polarity, solubility of
substrate and hydrophobicity [36]. Solvents may directly affect the
activity, stability and specificity of enzymes [37]. Mostly in lipase
catalyzed reactions, high enzymatic activity and reaction rates are ob-
served using solvents with low polarity [38].

Candida antarctica lipase B (CalB), is one of the most commonly used
biocatalysts, which is frequently designated as a typical lipase lacking
interfacial activation. It appears in a closed and an open conformation.
In the closed conformation, an amphiphilic α-helix, lid, secludes the
active site from the medium. In the open form lid gets displaced and
hydrophobic residues exposed around the active site to the medium.
This exposed hydrophobic area is energetically unfavorable in the

Fig. 1. 1H NMR full spectra of aspirin methyl ester (AME) and the product of AME hydrolysis in the presence of chloroform at 35 °C/12 h in WB/US (CDCl3, 400 MHz, 25 °C).
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absence of a hydrophobic interface, resulting to stabilization of the
closed conformation. Upon binding to the oil-water interface, opens the
lid and the exposed hydrophobic surface area helps to the interaction
between the enzyme and its substrate [39]. CALB is therefore less active
towards large triglycerides and can be used for the hydrolysis of simple
esters containing sensitive functional groups or smaller triglycerides
[16]. Moreover, researchers have also reported the effects of high
amount of water in lipase catalyzed reactions. Yadav and Manjula Devi
showed that 0.12 mol of water were required for the hydrolysis of
tetrahydrofurfuryl in the presence of heptane [40]. Similarly, Sharma
et al. reported that a high amount of water (1:3 (w/w) oil to water
ratio) was required to achieve hydrolysis of tuna fish oil in the presence
of iso-octane [41]. In our study low amount of water was added to the
system including CALB for the hydrolysis of AME in the presence of
triolein, being triolein hardly hydrolysed by the enzyme. From the re-
sults obtained it can be depicted that for ultrasound-assisted reactions
in the presence of water, the hydrolysis conversion rates were higher for
all the solvents tested than those observed using a WB, being re-
markably greater (65.26%) for triolein. This solvent seems to be more
friendly to the enzyme during processing as chloroform or DCM. During
sonication, the process of bubble formation, growth and collapse is

intimately dependent on factors, including the nature of the solvent, the
solvent viscosity, surface tension, vapor pressure, gas solubility, and
type of active intermediates or radicals formed (see solvents properties
in Table S1) [42]. When applied in the presence of organic solvents,
ultrasound processing tends to decrease their viscosity with time [43].
In the case of triolein, the high viscosity and surface tension may in-
fluence the ultrasound performance, being the bubble formation and
collapse a more gentle process during hydrolysis. This organic solvent,
compared to the others, does not loose its enzyme protective behavior,
being responsible for an increase of the conversion rate. The viscosity of
chloroform and dichloromethane when subjected to ultrasound can

Fig. 2. 1H NMR enlarged spectra (δ = 6.2–8.3 ppm) of aspirin methyl ester (AME) and the product of AME hydrolysis in the presence of chloroform at 35 °C/12 h in WB/US, (CDCl3,
400 MHz, 25 °C).

Scheme 1. Calculation of the hydrolysis conversion rates of aspirin methyl ester (AME).

Table 1
Hydrolysis conversion rates (%) of aspirin methyl ester (AME) from NMR data.

Solvents Without water With water

WB (%) WB + US (%) WB (%) WB + US (%)

Triolein 36.6 ± 0.1 32.1 ± 0.1 58.9 ± 0.1 65.3 ± 0.1
Chloroform 35.0 ± 0.1 36.5 ± 0.1 15.0 ± 0.1 17.7 ± 0.1
Dichloromethane 21.7 ± 0.1 22.0 ± 0.1 16.9 ± 0.1 20.9 ± 0.1
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undergo values which are no longer ideal for enzyme protection, thus
ultrasound can have a more negative effect against enzyme. The pre-
sence of organic solvents would determine ultrasound behavior and
enhance the mass transfer phenomena [18].

We could also observe that in absence of water the AME hydrolysis
by lipase did not show significant increase when assisted by ultrasound,
probably due to a decreased effect of solvent polarity on the enzyme
during hydrolysis.

3.1.2. Effect of ultrasound on the hydrolysis conversion of aspirin methyl
ester (AME)

To investigate the possible accelerative effects of ultrasound on the
hydrolysis of AME in the presence and absence of water using different
solvents such as triolein, CHCl3 and DCM, the comparative studies of
hydrolysis of AME were carried out. From Table 1, it can be clearly seen
that higher conversion rates were obtained for ultrasound assisted re-
actions of AME in the presence of water for the different solvents tested.
The conversion rates increased by 10.87%, 18.26% and 23.29% for
ultrasound-assisted reactions in the presence of water using triolein,
CHCl3 and DCM, respectively, when compared to WB reactions. This
can be explained by the cavitation energy which is thought to accel-
erate the reaction rates by increasing the movement of liquid molecules,
and thus the substrate’s access to the active site is increased as well as
the mass transfer [44]. At the same time, in the medium frequency
equipment used, the irradiation of water with ultrasound leads to the
breakdown, or sonolysis, of the liquid resulting in the formation of
hydroxyl and hydrogen radicals ([OH.]15mM; E = 8 kJ; data not
shown). Cavitation (growth and explosive collapse of microscopic
bubbles) can generate ‘‘hot spots’’ i.e. localized high temperature and
shock waves producing high pressure capable of breaking chemical
bonds [36]. At the same time and due to the high temperature and
pressure inside the bubbles in the strong collapse, water vapor is dis-
sociated and chemical products such as OH., O. and H., as well as H2O2

are created and are responsible for the hydrolysis improvements.
In addition, the physical effects like micro-turbulence, micro-

streaming and micro-emulsion formation were also generated by cavi-
tation effect, leading to high conversion rates. All these effects con-
tributed to a better mixing of the reaction mass and thus helping to
speed up the reactions [21,45,46].

It must be remarked that ultrasound-assisted hydrolysis must not be
carried out for prolonged periods since the exposure of enzyme to it
would lead to inactivation of the catalyst and the temperature of the
reaction may uncontrollably shoot up, which may result in charring of
the substrate [47]. We also observed that the conversion rate was sig-
nificantly enhanced for the reactions sonicated twice for 0.5 h with duty
cycle of 50% during 12 h of continuous process. The highest conversion
rate achieved was 65.3% for ultrasound assisted enzymatic hydrolysis
of AME in the presence of water using triolein as solvent.

3.1.3. Role of water on the enzymatic ultrasound assisted hydrolysis of
AME in the presence of organic solvents

Water plays an important role as nucleophile in enzymatic hydro-
lysis reaction. The effect of water on the conversion rate of lipase cat-
alyzed hydrolysis reaction of AME was studied using different solvents
with and without ultrasound assistance, as depicted in Table 1.
Blending the solvents with water seems to affect both the apparent
conversion rate and the reaction stability as a function of water content
[48]. Enzyme catalyzed hydrolysis with low water environment in
suitable solvents supports to enhance enzyme activity [49].

The AME hydrolysis in the presence of water (1%, w/v) using trio-
lein, an hydrophobic (non polar) solvent assisted by ultrasound was
confirmed to have the highest conversion rate in comparison with the
conversions using moderately hydrophobic CHCl3 and DCM. Enzymes
need a certain level of water in their structures in order to maintain
their natural conformation, allowing them to deliver their full func-
tionality. Moreover, water as a modifier of the solvent and up to a

certain level can modify the solvent properties such as polarity and the
solubility of the reactants and the products. Depending on the type of
the reaction, water can act as a substrate (e.g., in hydrolysis) or as
product (e.g., in esterolysis) of the enzymatic reaction, affecting the
enzyme turnover in various ways [50].

In our experiments, a better solubility of the AME substrate was
obtained applying a mixed aqueous–organic system. A microemulsion
of triolein and water is formed which act as reaction medium for hy-
drolysis; the substrate gets dissolved into the oil phase and the aqueous
phase hosts the enzyme [51]. This allows enzyme protection and thus
enhances hydrolysis conversion rates. The intentional use of a low
water amount relies on the fact that the presence of water molecules in
excess can cause inactivation, because the possible enhancement of the
kinetic energy in the reaction medium, provoked by ultrasonic waves,
may induce enzyme conformational changes. The use of solvents or
biphasic systems works as a protective mechanism, because the water
molecules find themselves around the enzyme, and they are not easily
misplaced by the ultrasound [18].

The trends observed when mixing water with organic solvents like
CHCl3 and DCM under ultrasound, show lower hydrolysis conversion
rates when compared with the ones obtained in the absence of water.
The reaction batches in absence of water using CHCl3 and di-
chloromethane give higher conversion rate when compared with the
batches in the presence of water. This may be due to the stripping out of
water from the enzyme by these two solvents, essential for the enzy-
matic reaction, which decreased the enzyme activity and hydrolysis
conversion rates [52].

3.2. Effect of ultrasound on lipase activity

The effect of ultrasound on enzymes depends on parameters such as
energy (potency and frequency) and exposure time to irradiation.
Studies on the effect of ultrasound on the enantio and regioselectivity of
lipase showed that the enzymes kept the enantioselectivities, despite
the fact that the porcine lipase has showed a slightly inferior en-
antioselectivity with the sonication treatment [53,54]. Xiao et al. [55]
and Chen et al. [56] found that the ultrasound did not amend the re-
gioselectivity of lipase. Other authors also observed the positive effects
of ultrasound in lipase-catalyzes reactions [53,57]. Several other au-
thors have postulated that enzymatic activity in non-aqueous solvents
may be diminished due to diffusional limitations on the substrates. This
phenomenon, common in heterogeneous systems including im-
mobilized catalysts, leads to the under-utilization of enzymatic power
and thus reduces the enzyme activity. Theoretically, it was showed that
such mass transfer limitations may decelerate the enzymatic catalysis in
organic solvents [58,59].

We also observed that after hydrolysis, lipase activity decreased
around 37% compared with the initial enzyme activity. The different
cycles of ultrasound and the time of exposure can be considered re-
sponsible for this behavior observed.

3.3. Proposed methodology for AME hydrolysis

Considering all the results obtained one can propose a methodology
for the enzyme-ultrasound assisted hydrolysis of AME in the presence of
water using triolein as solvent (Scheme 2).

4. Conclusions

We studied the selectivity of a lipase from Candida antarctica to
hydrolyze aspirin methyl ester in the presence of different solvents like
triolein, chloroform and dichloromethane. Very surprisingly and under
the reaction conditions shown triolein was not hydrolysed by CALB
with/without water or with/without ultrasound. The highest hydrolysis
rates were obtained when triolein was used as solvent in the presence of
water. Based on the data achieved a methodology for AME hydrolysis
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was set up: 1% of CALB, 5 mL of triolein, 1% H2O (v/v) alternating
100 rpm in WB with US at 53 kHz, 100 W, 50% duty cycle, 35 °C for
12 h.
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