248 research outputs found

    Construction and functional analyses of a comprehensive σ54 site-directed mutant library using alanine–cysteine mutagenesis

    Get PDF
    The σ54 factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. σ54 is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define σ54 residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of σ54 was constructed by alanine–cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)σ54 were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of σ54 were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased σ54 isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after σ54 isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the σ54-core RNAP interface changes upon activation

    Governor of the glnAp2 promoter of Escherichia coli

    Full text link
    Low-affinity sites for the activator NRI∼P (NtrC∼P) that map between the enhancer and the glnAp2 promoter were responsible for limiting promoter activity at high concentrations of NRI∼P in intact cells and in an in vitro transcription system consisting of purified bacterial components. That is, the low-affinity sites constitute a ‘governor’, limiting the maximum promoter activity. As the governor sites are themselves far from the promoter, they apparently act either by preventing the formation of the activation DNA loop that brings the enhancer-bound activator and the promoter-bound polymerase into proximity or by preventing a productive interaction between the enhancer-bound activator and polymerase. The combination of potent enhancer and governor sites at the glnAp2 promoter provides for efficient activation of the promoter when the activator concentration is low, while limiting the maximum level of promoter activity when the activator concentration is high.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75402/1/j.1365-2958.2002.03211.x.pd

    Functional roles of the pre-sensor I insertion sequence in an AAA+ bacterial enhancer binding protein

    Get PDF
    Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial σ54-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein–DNA proximity assay to measure the contribution of the pre-SIi loop in σ54-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Eσ54. We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence

    Interactions between the RepB initiator protein of plasmid pMV158 and two distant DNA regions within the origin of replication

    Get PDF
    Plasmids replicating by the rolling circle mode usually possess a single site for binding of the initiator protein at the origin of replication. The origin of pMV158 is different in that it possesses two distant binding regions for the initiator RepB. One region was located close to the site where RepB introduces the replication-initiating nick, within the nic locus; the other, the bind locus, is 84 bp downstream from the nick site. Binding of RepB to the bind locus was of higher affinity and stability than to the nic locus. Contacts of RepB with the bind and nic loci were determined through high-resolution footprinting. Upon binding of RepB, the DNA of the bind locus follows a winding path in its contact with the protein, resulting in local distortion and bending of the double-helix. On supercoiled DNA, simultaneous interaction of RepB with both loci favoured extrusion of the hairpin structure harbouring the nick site while causing a strong DNA distortion around the bind locus. This suggests interplay between the two RepB binding sites, which could facilitate loading of the initiator protein to the nic locus and the acquisition of the appropriate configuration of the supercoiled DNA substrate

    Transcription activation by the siderophore sensor Btr is mediated by ligand-dependent stimulation of promoter clearance

    Get PDF
    Bacterial transcription factors often function as DNA-binding proteins that selectively activate or repress promoters, although the biochemical mechanisms vary. In most well-understood examples, activators function by either increasing the affinity of RNA polymerase (RNAP) for the target promoter, or by increasing the isomerization of the initial closed complex to the open complex. We report that Bacillus subtilis Btr, a member of the AraC family of activators, functions principally as a ligand-dependent activator of promoter clearance. In the presence of its co-activator, the siderophore bacillibactin (BB), the Btr:BB complex enhances productive transcription, while having only modest effects on either RNAP promoter association or the production of abortive transcripts. Btr binds to two direct repeat sequences adjacent to the −35 region; recognition of the downstream motif is most important for establishing a productive interaction between the Btr:BB complex and RNAP. The resulting Btr:BB dependent increase in transcription enables the production of the ferric-BB importer to be activated by the presence of its cognate substrate

    The Generation of Promoter-Mediated Transcriptional Noise in Bacteria

    Get PDF
    Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.Comment: 4 figures, 1 table. Supplemental materials are also include

    Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping

    Get PDF
    Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58–156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes

    Transcriptional control in the prereplicative phase of T4 development

    Get PDF
    Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ70, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ70, which then allows the T4 activator MotA to also interact with σ70. In addition, AsiA restructuring of σ70 prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity
    corecore