16 research outputs found

    Web Service Deployment for Selecting a Right Steganography Scheme for Optimizing Both the Capacity and the Detectable Distortion

    Get PDF
    The principal objective of this effort is to organize a network facility to hide the secret information in an image folder without disturbing its originality. In the literature lot of algorithms are there to hide the information in an image file but most of it consumes high resource for completing the task which is not suitable for light weight mobile devices. Few basic algorithms like 1LSB, 2LSB and 3LSB methods in the literature are suitable for mobile devices since the computational complexity is very low. But, these methods either lack in maintaining the originality of the source image or in increasing the number of bits to be fixed. Furthermore, every algorithm in the literature has its own merits and demerits and we cannot predict which algorithm is best or worst since, based on the parameters such as size of the safety duplicate and encryption algorithm used to generate the cipher text the steganography schemes may produce best or worst result with respect to computational complexity, capacity, and detectable distortion. In our proposed work, we have developed a web service that takes cover image and plain text as the input from the clients and returns the steganoimage to the clients. The steganoimage will be generated by our proposed work by analyzing the above said parameters and by applying the right steganography scheme. The proposed work helps in reducing the detectable distortion, computational complexity of the client device, and in increasing the capacity. The experimental result says that, the proposed system performs better than the legacy schemes with respect to capacity, computational complexity, and detectable distortion. This proposed work is more useful to the client devices with very low computational resource since all the computational tasks are deployed in the server side

    Occurrence of double primary malignancies in an African renal transplant recipient

    No full text
    A 63-year-old African male with end stage renal disease who received a renal transplantation from his daughter after successful treatment of hepatitis C virus, type 1 genotype developed metastatic Kaposi′s sarcoma and subsequently adenocarcinoma of the prostate. He was successfully treated with chemotherapy and reduction of immunosuppression and switch over to rapamycin

    A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    No full text
    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures. (C) 2018 Author(s)
    corecore