133 research outputs found

    Signals of Early-Universe Physics in Cosmology

    Get PDF
    This is a thesis on theoretical cosmology. The first and largest part is a study of cosmic strings, in particular their dynamics and signals in higher dimensional spacetimes. The second part is a study of black holes in a quintessence background. Cosmic strings are predicted by models of the early universe. They were thought to arise, originally, from Grand Unified Theories, and more recently from brane inflationary models based in string theory. In Chapter 3 we find exact solutions for cosmic string loop trajectories in higher dimensions, and find the regions of parameter space for which cusps exist. We find that winding the internal dimensions slows the average velocity of string loops, and conjecture that the periodicity of internal space may contribute to self-intersections. In Chapter 4, we calculate the gravitational wave signal from cosmic string cusps in higher dimensions, and find it is much reduced relative to the 4D case. The main reason for this is the large reduction in the probability of cusps occurring on loops in higher dimensions, as well as a slight reduction in signal from individual cusps. In Chapter 5, we study cosmic string trajectories in warped spacetimes, such as may be found in realistic brane inflation models. We find that contrary to claims in the literature, the warping of the internal space does not prevent the internal motion of strings. The energy associated with the warping of spacetime means that the energy of a loop appears to change over time from our 4D perspective. Finally, in Chapter 6, we find an analytic, general-relativistic solution describing a black hole in a quintessence universe. Quintessence is a model of late-time cosmic acceleration in which expansion is sourced by a scalar field. Our solution shows the interaction between this scalar field and a black hole. The scalar field is shown to continue its cosmological "rolling" behaviour everywhere, including on the black hole event horizon, and the black hole is shown slowly to accrete scalar field. This is a perturbative solution valid throughout all of space but only over a finite period of time

    Cosmic superstring trajectories in warped compactifications

    Full text link
    We explore the generic motion of cosmic (super)strings when the internal compact dimensions are warped, using the Klebanov-Strassler solution as a prototypical throat geometry. We find that there is no dynamical mechanism which localises the string at the tip of the throat, but rather that the motion seems to explore both internal and external degrees of freedom democratically. This indicates that cosmic (super)strings formed by inflationary brane-antibrane annihilation will have sufficient internal motion for the gravitational wave signals from the string network to be suppressed relative to the signal from a `standard' cosmic string network.Comment: 31 pages, 8 figure

    Effect of extra dimensions on gravitational waves from cosmic strings

    Get PDF
    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands

    CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2°C

    Get PDF
    Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN intermediate complexity climate model (including climate response and process uncertainty) and a stabilization target of 2°C, show that including the permafrost carbon pool in the model increases the land carbon emissions at stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly reduced to between 0.08 and 0.16 Gt C year-1 (10th to 90th percentile) when considering 1.5°C stabilization targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and 345 Gt C (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere for stabilization target of 2°C. This value is 60 to 100 Gt C less for a 1.5°C target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are already present in most low emissions scenarios

    Evaluation of soil carbon simulation in CMIP6 Earth system models

    Get PDF
    The response of soil carbon represents one of the key uncertainties in future climate change. The ability of Earth system models (ESMs) to simulate present-day soil carbon is therefore vital for reliably estimating global carbon budgets required for Paris Agreement targets. In this study CMIP6 ESMs are evaluated against empirical datasets to assess the ability of each model to simulate soil carbon and related controls: net primary productivity (NPP) and soil carbon turnover time (Ď„s). Comparing CMIP6 with the previous generation of models (CMIP5), a lack of consistency in modelled soil carbon remains, particularly the underestimation of northern high-latitude soil carbon stocks. There is a robust improvement in the simulation of NPP in CMIP6 compared with CMIP5; however, an unrealistically high correlation with soil carbon stocks remains, suggesting the potential for an overestimation of the long-term terrestrial carbon sink. Additionally, the same improvements are not seen in the simulation of Ď„s. These results suggest that much of the uncertainty associated with modelled soil carbon stocks can be attributed to the simulation of below-ground processes, and greater emphasis is required on improving the representation of below-ground soil processes in future developments of models. These improvements would help to reduce the uncertainty in projected carbon release from global soils under climate change and to increase confidence in the carbon budgets associated with different levels of global warming.</p

    Quantifying uncertainties of permafrost carbon–climate feedbacks

    Get PDF
    The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land–atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN–JULES and IMOGEN–ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon–climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature (ΔT) by the year 2100 and 0.5 and 17 % of ΔT by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric – the frozen carbon residence time (FCRt) in years – that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change

    Experiences of in-patient mental health services: systematic review

    Get PDF
    Background In-patients in crisis report poor experiences of mental healthcare not conducive to recovery. Concerns include coercion by staff, fear of assault from other patients, lack of therapeutic opportunities and limited support. There is little high-quality evidence on what is important to patients to inform recovery-focused care.Aims To conduct a systematic review of published literature, identifying key themes for improving experiences of in-patient mental healthcare.Method A systematic search of online databases (MEDLINE, PsycINFO and CINAHL) for primary research published between January 2000 and January 2016. All study designs from all countries were eligible. A qualitative analysis was undertaken and study quality was appraised. A patient and public reference group contributed to the review.Results Studies (72) from 16 countries found four dimensions were consistently related to significantly influencing in-patients' experiences of crisis and recovery-focused care: the importance of high-quality relationships; averting negative experiences of coercion; a healthy, safe and enabling physical and social environment; and authentic experiences of patient-centred care. Critical elements for patients were trust, respect, safe wards, information and explanation about clinical decisions, therapeutic activities, and family inclusion in care.Conclusions A number of experiences hinder recovery-focused care and must be addressed with the involvement of staff to provide high-quality in-patient services. Future evaluations of service quality and development of practice guidance should embed these four dimensions.Declaration of interest K.B. is editor of British Journal of Psychiatry and leads a national programme (Synergi Collaborative Centre) on patient experiences driving change in services and inequalities

    The effect of extra dimensions on gravity wave bursts from cosmic string cusps

    Full text link
    We explore the kinematical effect of having extra dimensions on the gravity wave emission from cosmic strings. Additional dimensions both round off cusps, and reduce the probability of their formation. We recompute the gravity wave burst, taking into account these two factors, and find a potentially significant damping on the gravity waves of the strings.Comment: 33 pages, 8 figures, published versio

    The Bayelva high Arctic permafrost long-term observation site: an opportunity for joint international research on permafrost, atmosphere, ecology and snow

    Get PDF
    Most permafrost is located in the Arctic, and in total it contains around 600Gt of frozen organic carbon. This represents several times the remaining budget for anthropogenic emissions if we are to limit global warming below 2ÂşC, and this carbon could have a significant impact on global climate if it is released to the atmosphere following permafrost thaw. At present, the Arctic climate is changing much more rapidly than the rest of the globe, and yet observational data density in the region is low. The positive feedback between climate warming and permafrost carbon emissions depends on changing land-atmosphere energy and mass exchanges. There is thus a great need to understand links between the energy balance, which can vary rapidly over hourly to annual time scales, and permafrost, which changes slowly over long time periods. This understanding mandates long-term observational data sets. There is also a need to realistically incorporate permafrost into global modelling frameworks such as Earth System Models. Evaluating and parameterising these process-based models especially requires simultaneous measurements of interacting variables. Here we present an example of such a long-term data set, from the Bayelva Site at Ny-Ă…lesund, Svalbard, where meteorology, energy balance components and subsurface observations have been made for the last 20 years. Additional data include a high resolution digital elevation model and a panchromatic image. This paper presents the data set produced so far, explains instrumentation, calibration, processing and data quality control, as well as the sources for various resulting data sets. The resulting data set is unique in the Arctic and serves a baseline for future studies. Since the data provide observations of temporally variable parameters that mitigate energy fluxes between permafrost and atmosphere, such as snow depth and soil moisture content, they are suitable for use in integrating, calibrating and testing permafrost as a component in Earth System Models. The data set also includes a high resolution digital elevation model that can be used together with the snow physical information for snow pack modeling. The data show that mean annual, summer and winter soil temperature data from shallow to deeper depths have been warming over the period of record, indicating the degradation of permafrost at this site. This site is one of only a handful of permafrost sites where long-term automatic monitoring has taken place and data are accessible. There is a great need for continuous monitoring at more sites, to span the full range of permafrost conditions. Monitoring is often limited by scientific project funding, typically lasting only 3 or 4 years. This will continue to present a challenge unless there is investment by governments to operationalise these networks
    • …
    corecore