43 research outputs found

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    Objective: We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. Methods: We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. Results: We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 × 10−4 in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 × 10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07, p = 0.004), but no other primary stroke subtypes (all p > 0.1). Conclusions: Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF

    Hydrogen activation by [NiFe]-hydrogenases

    Get PDF
    Hydrogenase-1 (Hyd-1) from Escherichia coli is a membrane-bound enzyme that catalyses the reversible oxidation of molecular H2 The active site contains one Fe and one Ni atom and several conserved amino acids including an arginine (Arg(509)), which interacts with two conserved aspartate residues (Asp(118) and Asp(574)) forming an outer shell canopy over the metals. There is also a highly conserved glutamate (Glu(28)) positioned on the opposite side of the active site to the canopy. The mechanism of hydrogen activation has been dissected by site-directed mutagenesis to identify the catalytic base responsible for splitting molecular hydrogen and possible proton transfer pathways to/from the active site. Previous reported attempts to mutate residues in the canopy were unsuccessful, leading to an assumption of a purely structural role. Recent discoveries, however, suggest a catalytic requirement, for example replacing the arginine with lysine (R509K) leaves the structure virtually unchanged, but catalytic activity falls by more than 100-fold. Variants containing amino acid substitutions at either or both, aspartates retain significant activity. We now propose a new mechanism: heterolytic H2 cleavage is via a mechanism akin to that of a frustrated Lewis pair (FLP), where H2 is polarized by simultaneous binding to the metal(s) (the acid) and a nitrogen from Arg(509) (the base)

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Lymphocytic hypophysitis in the elderly: A case presentation and review of the literature

    No full text
    Lymphocytic hypophysitis (LH), an autoimmune mediated chronic inflammation of the pituitary gland, is uncommon in the elderly population greater than 70 years old. It most commonly occurs in peripartum women and classically presents with mass-effect symptoms, hyperprolactinemia, or with symptoms of adenohypophysial or neurohypophysial involvement. We report a case of an elderly female who presented with headaches, visual defects, panhypopituitarism, and a sellar mass thought to be a non-functioning pituitary macroadenoma. On surgical pathology the diagnosis of LH was made. In a comprehensive literature search, we have found only sixteen cases of LH in the elderly. A comparison of the clinical differences between the pediatric, adult, and elderly populations with LH revealed notable differences between the clinical presentations and hormonal deficiencies present in the pediatric versus the adult and elderly populations. A much larger portion of adults and the elderly present with headache and visual disturbances, while a majority of the pediatric population presents with diabetes insipidus and growth hormone deficiency. Adults and elderly with LH have a much higher association with autoimmune disease than children. There was no gender predilection found in the elderly population, which is a notable difference from the adult population in which female cases of LH are much more common

    Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts: a delivery system for the nontypeable Haemophilus influenzae antigen Omp26

    No full text
    This study has investigated the feasibility of a combination of recombinant surface layer (S-layer) proteins and empty bacterial cell envelopes (ghosts) to deliver candidate antigens for a vaccine against nontypeable Haemophilus influenzae (NTHi) infections. The S-layer gene sbsA from Bacillus stearothermophilus PV72 was used for the construction of fusion proteins. Fusion of maltose binding protein (MBP) to the N-terminus of SbsA allowed expression of the S-layer in the periplasm of Escherichia coli. The outer membrane protein (Omp) 26 of NTHi was inserted into the N-terminal and C-terminal regions of SbsA. The presence of the fused antigen Omp26 was demonstrated by Western blot experiments using anti-Omp26 antisera. Electron microscopy showed that the recombinant SbsA maintained the ability to self-assemble into sheet-like and cylindrical structures. Recombinant E. coli cell envelopes (ghosts) were produced by the expression of SbsA/Omp26 fusion proteins prior to gene E-mediated lysis. Intraperitoneal immunization with these recombinant bacterial ghosts induced an Omp26-specific antibody response in BALB/c mice. These results demonstrate that the NTHi antigen, Omp26, was expressed in the S-layer self-assembly product and this construct was immunogenic for Omp26 when administered to mice in bacterial cell envelopes

    Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    No full text
    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics
    corecore