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Abstract 

Hydrogenase-1 (Hyd-1) from E. coli is a membrane-bound enzyme that 

catalyzes the reversible oxidation of molecular H2.  The active site contains 

one Fe and one Ni atom and several conserved amino acids including an 

arginine (509), which interacts with two conserved aspartate residues (118 and 

574) forming an outer shell canopy over the active site, There is also a highly 

conserved  glutamate (28) positioned on the opposite side of the active site to 

the canopy.  The mechanism of hydrogen activation has been dissected by 

site-directed mutagenesis to identify the catalytic base responsible for 
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splitting molecular hydrogen and possible proton transfer pathways to/from 

the active site.  Previous reported attempts to mutate residues in the canopy 

were unsuccessful, leading to an assumption of a purely structural role.  

Recent discoveries, however, suggest a catalytic requirement for example, 

replacing the arginine with lysine (R509K) leaves the structure virtually 

unchanged, but catalytic activity falls by more than 100-fold. Variants 

containing amino acid substitutions at either, or both, aspartates retain 

significant activity.  We now propose a new mechanism: heterolytic H2 

cleavage is via a mechanism akin to that of a frustrated Lewis pair (FLP), 

where H2 is polarized by simultaneous binding to the metal(s) (the acid) and a 

nitrogen from Arg509 (the base). 

 

Introduction 

Hydrogenases are metalloenzymes that catalyse the conversion of molecular H2 to protons 

and electrons, and the reverse reaction to regenerate H2 (reviewed in [1]).  They are found in 

the periplasm or cytoplasm of bacteria, archaea and some eukaryotes, either as soluble 

enzymes or in membrane-bound form, with various functions, including provision of energy 

by oxidation of H2, balancing the redox potential of the cell, establishing transmembrane 

gradients, sensing and signalling.  There are three classes, with [NiFe], [FeFe] or [Fe] metal 

centres respectively, and the chemical mechanism of efficient hydrogen cleavage or 

generation by these enymes is of particular interest because, unlike man-made catalysts, they 

do not require a noble metal such as Pt. 

There are three types of [NiFe] hydrogenases:  Membrane Bound, Regulatory and Soluble.  

The metal ions are coordinated by two bridging sulphurs from protein cysteine side-chains, 

the Ni by two further ‘terminal’ cysteine sulphurs, and the Fe by two inorganic cyanides and 
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one carbonyl ligand.  A third bridging site is open for binding of substrate H2 and other small 

ligands, such as hydroxide (see later).  The reaction cycle involves complex proton-coupled 

electron transfers, with the resulting electrons produced transferred from the metal centre to a 

string of FeS clusters leading to the protein surface [2].   During the reaction cycle both  Ni 

and Fe are initially in formal oxidation state II, with Ni passing through Ni(II)–H

 (Ni-R, a 

hydrido species) Ni(III) –H

 (Ni-C, also a hydrido species), and probably Ni(I) (Ni-L, in 

which hydride has migrated as H
+
)  before returning to the starting point II (Ni-SI).  Binding 

of H2 to a metal increases its acidity, facilitating heterolytic cleavage via abstraction of H
+
 by 

a nearby base and leaving a bridging H
-
 at the metal centre.  [NiFe] hydrogenases are 

susceptible to aerobic oxidation, forming NiIII species that require reductive activation 

(termed ‘Ready’ and ‘Unready’ states, respectively, in order of ease of reductive re-

activation).   A subclass referred to as ‘O2-tolerant’ [NiFe] hydrogenases are able to sustain 

H2 oxidation in the presence of O2, owing to their exclusive formation of the Ready state 

(also known as Ni-B) which is rapidly re-activated [3].   

Hydrogenase structure and activity.  

Several crystal structures have been determined for bacterial [NiFe] hydrogenases, showing 

similar folds, which reflect significant sequence conservation, and very similar active sites 

[1]. Figure 1 shows the structure of (Hyd-1), a membrane-bound [NiFe] hydrogenase that is 

tolerant to O2 exposure [4].  It is a heterotetramer, consisting of two identical small subunits 

and two identical large subunits.  The small subunits anchor the enzyme to the periplasmic 

side of the cytoplasmic membrane via a C-terminal single-pass transmembrane (TM) helix, 

and contain three FeS clusters which serve to transfer electrons from the active site to an 

associated membrane bound Cytochrome b.  The large subunits harbour the [NiFe] centre and 

likely entry channels for H2 and exit pathways for H
+
.   
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Structural analysis of various [NiFe] hydrogenases reveal a long channel extending from the 

surface of the enzyme to the active site that has been proposed to be the entry route for H2.  

The channel can bind Xenon [5] or Krypton [6] in crystals demonstrating an affinity for gas 

molecules.  Site directed mutagenesis provides further evidence that H2 enters via this 

channel, for example, double mutant Val74Ile, Leu122Phe of D. fructosovorans (Val78 and 

Leu126 in E. coli) hydrogenase constricts the end of the channel closest to the active site.  

This does not affect the turnover rate of the variant enzyme, but leads to a five-fold increase 

in KM [7] with respect to H2, suggesting gas molecules have reduced access to the active site.   

Conversely, increasing the size of gas channels in an oxygen tolerant regulatory hydrogenase 

from R. eutropha produces an enzyme that is sensitive to inhibition by oxygen, because 

oxygen is no longer prevented from reaching the active site [8]. 

Once hydrogen molecules are split the resultant protons are likely to travel through the 

enzyme via a Grotthuss-like mechanism, with H
+
 being transferred between charged or polar 

groups within hydrogen bonding distance of each other.  Replacement of strictly conserved 

Glu25 of D. fructosovorans (Glu28 in E. coli), positioned next to the [NiFe] cluster, with 

glutamine produces an enzyme capable of splitting/recombining H2, but incapable of 

turnover.  This suggests Glu28 is an entry point into a proton transfer pathway, since proton 

transport is a requirement for enzymatic turnover, but not for substrate cleavage [9].  

Additionally, structural analysis of D. vulgaris hydrogenase has identified three possible 

proton transfer routes starting from this conserved glutamate [10].  A second proton transfer 

pathway was identified by mutagenesis of a highly-conserved, histidine-rich motif observed 

in many membrane bound hydrogenases [11].  Mutagenesis of His104 from D. gigas 

hydrogenase (His119 in E. coli) produced an enzyme with a significantly impaired activity 

and computational analysis identified a possible route for proton transfer independent of 

Glu28 but including the highly conserved Asp118 (see below) and His119 [11] .  
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The active site also contains a strictly conserved arginine, Arg509 in Hyd-1, above the metal 

centre and proposed substrate binding site, with one Nɳ atom only 4.5 Å from the Ni ion 

(Figure 2).  The very close proximity to the electropositive metal centre, and strict sequence 

conservation implies a functional importance for this arginine, but it has been largely ignored 

as a candidate for the active site base owing to the typically high pKa of arginine residues.  

Arg509 also interacts with two highly conserved aspartates, Asp118 and Asp574, to form a 

conserved canopy above the active site.  The conservation of the arginine had been attributed 

to a role in stabilization of the structure, including a proposed hydrogen bond to one of the Fe 

cyanide ligands [12, 13], although the geometry of this hydrogen bond is not favourable.  The 

functional role of the arginine has not, however, been investigated by site-directed 

mutagenesis, although there were two unsuccessful attempts to replace the arginine with 

alternative side-chains in enzymes from Thiocapsa roseopersicina [11] and Desulfovibrio 

fructosovorans [14], which did not lead to production of mature enzyme. 

Proposals for the catalytic mechanism have previously centred on the suggestion that the base 

might be a terminal cysteine ligand coordinated to the Ni ion, Cys574 in Hyd-1(Figure 2), 

adjacent to the substrate binding site [15, 16].  A recent 0.89 Å resolution crystal structure for 

the [NiFe] hydrogenase from Desulfovibrio vulgaris, specifically in the active reduced Ni-R 

form, gave electron density maps of outstanding quality where  many hydrogen atoms were 

clearly visible [10].  The structure was consistent with the presence of a bound hydride ion 

bridging the metals, with some difference electron density on the sulphur atom for Cys574, 

which the authors interpreted as the H
+ 

product of cleavage, although the geometry was 

unusual. 

Structure and activity of E. coli Hyd-1 canopy variants 

Recently, a combination of site-directed mutagenesis, electrochemistry and X-ray 

crystallography has been used to investigate whether the conserved, “canopy-forming” 
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residues in Hyd-1 have a role in activation of H2 [17].  Mutations Arg509Lys, Asp574Asn, 

Asp118Ala and Asp118Asn/Asp574Asn (double substitution) were introduced and their 

hydrogen oxidation activities measured as 0.8%, 83%, 26% and 20% of the H2 oxidation 

activity of native Hyd-1 (Figure 2).  Additionally, protein-film electrochemistry (PFE) 

showed all mutants had similar potentials for the onset of catalytic H2 oxidation, a property 

mainly dependent on the FeS clusters [18, 19].  The characteristic shape of the curve for 

native enzyme was retained for Arg509Lys, while the other variants showed negative shifts in 

the high-potential threshold indicating some stabilization of the ‘resting’ Ni
III

-OH state [20, 

21].  High resolution X-ray crystal structures showed the mutations had minimal effect on the 

structure of the protein, and the main-chain atoms of the refined atomic models of all variants 

could be superimposed on those of the native enzyme with root mean square (r.m.s.) 

deviations in the range 0.12-0.16Å.  The local conformations of the mutated canopy residues, 

509, 118 and 574, had even smaller main-chain r.m.s. deviations of 0.10-0.12Å.  The cysteine 

residues coordinating the metal ion were also unaffected by the incorporated amino acid 

substitutions, although Cys79 showed evidence of partial oxidation to sulphenic acid (Figure 

2) as a result of exposure to oxygen during purification [22].  The positions and occupancies 

of the Ni and Fe ions showed no significant changes between the variants, as judged by Fo-

Fo difference electron density maps, which are particularly sensitive to small changes in 

electron-dense atoms.  In all cases a small ligand was observed bridging the metal ions, and 

was assigned as a hydroxyl ion [23]. 

The side-chain conformations in the variants showed only small differences.  The 

conformation of Lys509 is very similar to Arg509, with small adjustments in side-chain 

torsion angles to maintain the hydrogen bond with Asp118.  The position of Nζ, superimposes 

closely on that of the corresponding Arg509 Nɳ, at a similar distance of 4.4Å above the Ni 

ion (Figure 2).  The smaller side chain allows space for one additional ordered water 
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molecule near the canopy residues [17].  The entire active site structure of Arg509Lys shows 

minimal disturbance from that of the native enzyme, indicating that structural change is not 

the origin of the considerable reduction in catalytic activity.  In Asp118Ala the smaller side 

chain does not result in additional water molecules, but Arg509 moves slightly closer to the 

metal ions as a consequence of the loss of the hydrogen bonds to Asp118.  The replacement 

of Asp574 with asparagine results in only a small rotation of the side-chain, and one new 

hydrogen bond between its Nδ2 and Oδ1of Asp118.  In the double substitution variant, where 

both aspartate residues are replaced by asparagine, the side-chain of Asn118 rotates away 

from Arg509 to relieve the unfavourable contact between their terminal NH groups, but 

retains the hydrogen bond from its Oδ1. 

Discussion 

Site directed mutagenesis in combination with structural and spectroscopic analysis have 

been invaluable in understanding many aspects of hydrogenase function: including how 

hydrogen enters to the active site, how protons are transported away after turnover, and most 

recently a new view as to how activation of H2 facilitates cleavage.  The replacement of 

Arg509 by lysine results in over 100-fold reduction in catalytic activity, despite a lack of 

structural change, which is remarkable given the significant alterations to the hydrogen 

bonding network at the active site that the different variants introduce.  The significant 

decrease in hydrogen oxidation activity overturns the previous assumption that the role of 

Arg509 is simply structural and provides powerful evidence for the direct involvement of the 

guanidinium group of Arg509 in catalysis.  It had previously been suggested that the catalytic 

base for H2 cleavage was one of the cysteine ligands to the Ni ion (Cys579 in Hyd-1), but a 

coordinated thiolate-S is expected to be a weak base [24].  On the other hand, the 

guanidinium group of Arg509 is a very strong base, capable of abstracting a proton if it was 

itself deprotonated.  Arginine side-chains normally have a pKa of 12 or more, but enzymes 
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often tune the properties of side-chains by creating specific environments and the use of 

arginine as a catalytic base is not unprecedented.   For example, it is accepted in the 

mechanisms of fumarate reductase and L-aspartate oxidase, as well as a proposed role in 

photosystem II [25, 26, 27].  The question that needs to be addressed is how Hyd-1 Arg509 

can be deprotonated in order to act as the necessary base.  Hyd-1, with other [NiFe] 

hydrogenases, is a reversible electrocatalyst, so that each step of the catalytic cycle should be 

reversible according to the appropriate potentials.  In addition, a hydrido ligand bound to the 

reduced metal centre would be an exceptionally strong base [28], while a bound H2 would be 

a weak acid.  The structure of the Ni-R form, with a bound hydride ion was established by the 

high resolution crystal structure discussed above [10] and the active site is shown 

schematically in Figure 3.  One Nɳ atom of Arg 509 is positioned close to the metal centre 

with favourable geometry for the strongly basic hydride ligand to deprotonate it and form H2.  

Consequently, the reverse reaction, heterolytic cleavage of H2 must also be possible.  The 

reaction can be driven in either direction depending on the electrochemical potential, i.e. the 

supply or withdrawal of electrons.  The heterolytic activation of hydrogen by arginine and the 

metal centre is similar to that of a frustrated Lewis pair (FLP) [29] where a strong Lewis acid 

and strong Lewis base are placed in close proximity, but are sterically prevented from 

reacting with each other.  Such an arrangement allows the Lewis acid and base to act 

cooperatively to activate small molecules such as H2.  In the active site of hydrogenases 

binding of hydrogen to the metal centre polarises the molecule and greatly increases its 

acidity facilitating the abstraction of a proton by the (Lewis) base.  It has been proposed, that 

the catalytic base in [NiFe] hydrogenases is Arg509 in Hyd-1 [17], and the corresponding 

residue in other homologues.  Interestingly, a related mechanism is proposed for [FeFe] 

hydrogenases, where an unusual bridging ligand places a pendant nitrogen over the substrate 

binding site, that is essential for catalysis [30].  In addition, some active synthetic 
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hydrogenase analogues also have a pendant base over a redox-active metal ion [31].  There is 

now a convergence of [NiFe] and [FeFe] hydrogenases, with the synthetic analogues, towards 

an FLP mechanism for splitting hydrogen.   

 

Accession codes 

The coordinates and structure factors are available from the protein data bank with accession 

codes 4UE3 (R509K), 5A4F (D118A), 5A4I (D574N), 5A4M (deltaTM) and 5ADU 

(D118N/D574N). 
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Figure Legends 

Figure 1 

The structure of deltaTM Hyd-1 (PDB: 5A4M) showing the overall fold and functionally 

important prosthetic groups.  The two small subunits are shown in different shades of blue, 

while the two large subunits are shown in yellow and bronze.  The [NiFe] centres and FeS 

clusters are shown as spheres.    

Figure 2 

Active site structures and catalytic activities for native Hyd-1 and variants investigated in this 

research. The histogram shows average turnover rate (s
1

) for each enzyme, with error bars 

indicating the standard error of the mean of at least twenty repeats with at least two different 

preparations of each enzyme. On the left is the active site of native (deltaTM) Hyd-1 (PDB: 

5A4M) and the right Arg509Lys (PDB: 4UE3).  The Ni atom (green), Fe atom (bronze) and 

the O atom of the bridging hydroxide (red) are all shown as spheres. Some oxidation of C79 
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to sulfenic acid was observed at the active site of each variant (not shown). The closest 

distance between the Ni and N atom of residue 509 (dashed lines) is also indicated.  Residues 

His 119 is shown on the WT structure and Glu28 on Arg509Lys to indicate the position of 

the proton transfer pathways relative to the [NiFe]-centre modified from [17] with permission 

Figure 3 

Proposal for the H2 activation step in [NiFe] hydrogenases using suspended arginine as a 

general base, as in a frustrated Lewis pair mechanism. Hydrogen is polarized between the 

metal (acid) and deprotonated guanidine (base) of Arg509, oxidizing H2 and forming the Ni-

R species (left). The hydridic Ni-R species deprotonates the guanidinum headgroup of 

Arg509, forming molecular hydrogen. Modified from [17] with permission. 
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