11 research outputs found
Know an Emotion by the Company It Keeps: Word Embeddings from Reddit/Coronavirus
Social media is a crucial communication tool (e.g., with 430 million monthly active users in online forums such as Reddit), being an objective of Natural Language Processing (NLP) techniques. One of them (word embeddings) is based on the quotation, “You shall know a word by the company it keeps,” highlighting the importance of context in NLP. Meanwhile, “Context is everything in Emotion Research.” Therefore, we aimed to train a model (W2V) for generating word associations (also known as embeddings) using a popular Coronavirus Reddit forum, validate them using public evidence and apply them to the discovery of context for specific emotions previously reported as related to psychological resilience. We used Pushshiftr, quanteda, broom, wordVectors, and superheat R packages. We collected all 374,421 posts submitted by 104,351 users to Reddit/Coronavirus forum between January 2020 and July 2021. W2V identified 64 terms representing the context for seven positive emotions (gratitude, compassion, love, relief, hope, calm, and admiration) and 52 terms for seven negative emotions (anger, loneliness, boredom, fear, anxiety, confusion, sadness) all from valid experienced situations. We clustered them visually, highlighting contextual similarity. Although trained on a “small” dataset, W2V can be used for context discovery to expand on concepts such as psychological resilience
Novel genes and sex differences in COVID-19 severity
[EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S
NormLab: A Framework to Support Research on Norm Synthesis (Demonstration)
MAS research has investigated norms as a means to coordinate open multi-agent systems (MAS). This has spurred a strand of research on on-line norm synthesis algorithms for MASs. However, to the best of our knowledge, currently there is no computational framework to support the development and study of on-line norm synthesis. Here we present NORMLAB, a novel framework to support norm synthesis research, highlighting its important features. We also outline the operation of two novel on-line norm synthesis strategies, which significantly outperform the state of the art
1Using IRON to Build Frictionless On-line Communities
On-line communities are virtual environments where users exchange contents. Occasionally, users ’ interactions lead to frictions, jeopardising the proper functioning of the community. Trying to avoid frictions, on-line communities typically incorporate a regulation mechanism based on (i) norms set by the owner of the community; and (ii) human moderators. In this paper we present a participatory legislation mechanism that automatically synthesises norms for an on-line community based on users ’ complaints about contents. With this aim, we present an agent-based simulator to model the interactions within on-line communities. We then exploit IRON, an automatic norm synthesis mechanism, to regulate simulated on-line communities. As a result, IRON synthesises norms that prevent a user from uploading contents that users regard as unacceptable by means of complaints, hence avoiding frictions
Designing an app for home-based enriched music-supported therapy in the rehabilitation of patients with chronic stroke: a pilot feasibility study
Objective: After completing formal stroke rehabilitation programs, most patients do not achieve full upper limb motor function recovery. Music-supported Therapy (MST) can improve motor functionality post stroke through musical training. We designed a home-based enriched Music-supported Therapy (eMST) program to provide patients with chronic stroke the opportunity of continuing rehabilitation by themselves. We developed an app to conduct the eMST sessions at home with a MIDI-piano and percussion instruments. Here, we tested the feasibility of the eMST intervention using the novel app. Method: This is a pilot study where five patients with chronic stroke underwent a 10-week intervention of 3 sessions per week. Patients answered feasibility questionnaires throughout the intervention to modify aspects of the rehabilitation program and the app according to their feedback. Upper limb motor functions were evaluated pre- and post-intervention as well as speed and force tapping during daily piano performance. Results: Patients clinically improved in upper limb motor function achieving the Minimal Detectable Change (MDC) or Minimal Clinically Important Difference (MCID) in most of motor tests. The app received high usability ratings post-intervention. Conclusion: The eMST program is a feasible intervention for patients with chronic stroke and its efficacy should be assessed in a clinical trial
Enriched Music-supported Therapy for chronic stroke patients : a study protocol of a randomised controlled trial
Background: Residual motor deficits of the upper limb in patients with chronic stroke are common and have a negative impact on autonomy, participation and quality of life. Music-Supported Therapy (MST) is an effective intervention to enhance motor and cognitive function, emotional well-being and quality of life in chronic stroke patients. We have adapted the original MST training protocol to a home-based intervention, which incorporates increased training intensity and variability, group sessions, and optimisation of learning to promote autonomy and motivation. Methods: A randomised controlled trial will be conducted to test the effectiveness of this enriched MST (eMST) protocol in improving motor functions, cognition, emotional well-being and quality of life of chronic stroke patients when compared to a program of home-based exercises utilizing the Graded Repetitive Arm Supplementary Program (GRASP). Sixty stroke patients will be recruited and randomly allocated to an eMST group (n = 30) or a control GRASP intervention group (n = 30). Patients will be evaluated before and after a 10-week intervention, as well as at 3-month follow-up. The primary outcome of the study is the functionality of the paretic upper limb measured with the Action Research Arm Test. Secondary outcomes include other motor and cognitive functions, emotional well-being and quality of life measures as well as self-regulation and self-efficacy outcomes. Discussion: We hypothesize that patients treated with eMST will show larger improvements in their motor and cognitive functions, emotional well-being and quality of life than patients treated with a home-based GRASP intervention. Trial registration: The trial has been registered at ClinicalTrials.gov and identified as NCT04507542 on 8 August 2020.Peer reviewe
Design of an AI Platform to Support Home-Based Self-Training Music Interventions for Chronic Stroke Patients
In the Play&Sing project, we are developing an AI platform to support home-based self-training interventions for chronic stroke patients. A large percentage of patients suffering from this disease show motor deficits that clearly hinder their daily activities and diminish their quality of life. In this project we are proposing and testing a new Music Supported Therapy (MST) to induce upper limb motor recovery.With the help of a tablet-based application and a small musical keyboard, we are developing an AI platform to support home-based MST. Specifically, the role of AI algorithms is to support therapists and to boost user engagement by personalizing the interventions according to patient needs and preferences. AI algorithms will provide the therapists with hindsight and foresight tools. In the proposed MST, patients are performing 30 training sessions of 45 minutes with a frequency of 3 sessions per week. In this paper we present our platform and preliminary experiments conducted at a pilot phase
Design of an AI Platform to Support Home-Based Self-Training Music Interventions for Chronic Stroke Patients.
[EN]In the Play&Sing project, we are developing an AI platform to support home-based self-training interventions for chronic stroke patients. A large percentage of patients suffering from this disease show motor deficits that clearly hinder their daily activities and diminish their quality of life. In this project we are proposing and testing a new Music Supported Therapy (MST) to induce upper limb motor recovery.With the help of a tablet-based application and a small musical keyboard, we are developing an AI platform to support home-based MST. Specifically, the role of AI algorithms is to support therapists and to boost user engagement by personalizing the interventions according to patient needs and preferences. AI algorithms will provide the therapists with hindsight and foresight tools. In the proposed MST, patients are performing 30 training sessions of 45 minutes with a frequency of 3 sessions per week. In this paper we present our platform and preliminary experiments conducted at a pilot phase.Peer reviewe
Novel genes and sex differences in COVID-19 severity.
Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p < 5x10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p = 1.3x10-22 and p = 8.1x10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (p = 4.4x10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p = 2.7x10-8) and ARHGAP33 (p = 1.3x10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥ 60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided
GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19
Data availability: Downloadable summary data are available through the GenOMICC data site (https://genomicc.org/data). Summary statistics are available, but without the 23andMe summary statistics, except for the 10,000 most significant hits, for which full summary statistics are available. The full GWAS summary statistics for the 23andMe discovery dataset will be made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. For further information and to apply for access to the data, see the 23andMe website (https://research.23andMe.com/dataset-access/). All individual-level genotype and whole-genome sequencing data (for both academic and commercial uses) can be accessed through the UKRI/HDR UK Outbreak Data Analysis Platform (https://odap.ac.uk). A restricted dataset for a subset of GenOMICC participants is also available through the Genomics England data service. Monocyte RNA-seq data are available under the title ‘Monocyte gene expression data’ within the Oxford University Research Archives (https://doi.org/10.5287/ora-ko7q2nq66). Sequencing data will be made freely available to organizations and researchers to conduct research in accordance with the UK Policy Framework for Health and Social Care Research through a data access agreement. Sequencing data have been deposited at the European Genome–Phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession number EGAS00001007111.Extended data figures and tables are available online at https://www.nature.com/articles/s41586-023-06034-3#Sec21 .Supplementary information is available online at https://www.nature.com/articles/s41586-023-06034-3#Sec22 .Code availability:
Code to calculate the imputation of P values on the basis of SNPs in linkage disequilibrium is available at GitHub (https://github.com/baillielab/GenOMICC_GWAS).Acknowledgements: We thank the members of the Banco Nacional de ADN and the GRA@CE cohort group; and the research participants and employees of 23andMe for making this work possible. A full list of contributors who have provided data that were collated in the HGI project, including previous iterations, is available online (https://www.covid19hg.org/acknowledgements).Change history: 11 July 2023: A Correction to this paper has been published at: https://doi.org/10.1038/s41586-023-06383-z. -- In the version of this article initially published, the name of Ana Margarita Baldión-Elorza, of the SCOURGE Consortium, appeared incorrectly (as Ana María Baldion) and has now been amended in the HTML and PDF versions of the article.Copyright © The Author(s) 2023, Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).GenOMICC was funded by Sepsis Research (the Fiona Elizabeth Agnew Trust), the Intensive Care Society, a Wellcome Trust Senior Research Fellowship (to J.K.B., 223164/Z/21/Z), the Department of Health and Social Care (DHSC), Illumina, LifeArc, the Medical Research Council, UKRI, a BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070 and BBS/E/D/30002275) and UKRI grants MC_PC_20004, MC_PC_19025, MC_PC_1905 and MRNO2995X/1. A.D.B. acknowledges funding from the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z), the Edinburgh Clinical Academic Track (ECAT) programme. This research is supported in part by the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant MC_PC_20029). Laboratory work was funded by a Wellcome Intermediate Clinical Fellowship to B.F. (201488/Z/16/Z). We acknowledge the staff at NHS Digital, Public Health England and the Intensive Care National Audit and Research Centre who provided clinical data on the participants; and the National Institute for Healthcare Research Clinical Research Network (NIHR CRN) and the Chief Scientist’s Office (Scotland), who facilitate recruitment into research studies in NHS hospitals, and to the global ISARIC and InFACT consortia. GenOMICC genotype controls were obtained using UK Biobank Resource under project 788 funded by Roslin Institute Strategic Programme Grants from the BBSRC (BBS/E/D/10002070 and BBS/E/D/30002275) and Health Data Research UK (HDR-9004 and HDR-9003). UK Biobank data were used in the GSMR analyses presented here under project 66982. The UK Biobank was established by the Wellcome Trust medical charity, Medical Research Council, Department of Health, Scottish Government and the Northwest Regional Development Agency. It has also had funding from the Welsh Assembly Government, British Heart Foundation and Diabetes UK. The work of L.K. was supported by an RCUK Innovation Fellowship from the National Productivity Investment Fund (MR/R026408/1). J.Y. is supported by the Westlake Education Foundation. SCOURGE is funded by the Instituto de Salud Carlos III (COV20_00622 to A.C., PI20/00876 to C.F.), European Union (ERDF) ‘A way of making Europe’, Fundación Amancio Ortega, Banco de Santander (to A.C.), Cabildo Insular de Tenerife (CGIEU0000219140 ‘Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19’ to C.F.) and Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC20/57 to C.F.). We also acknowledge the contribution of the Centro National de Genotipado (CEGEN) and Centro de Supercomputación de Galicia (CESGA) for funding this project by providing supercomputing infrastructures. A.D.L. is a recipient of fellowships from the National Council for Scientific and Technological Development (CNPq)-Brazil (309173/2019-1 and 201527/2020-0)