9 research outputs found

    IN SILICO PHARMACOKINETICS AND MOLECULAR DOCKING OF THREE LEADS ISOLATED FROM TARCONANTHUS CAMPHORATUS L.

    Get PDF
    Objective: To investigate the pharmacokinetic and toxicity profiles and spectrum of biological activities of three phytochemicals isolated from Tarconanthus camphoratus L. Methods: Several integrated web based in silico pharmacokinetic tools were used to estimate the druggability of Hispidulin, Nepetin and Parthenolide. Afterward, the structural based virtual screening for the three compounds' potential targets was performed using PharmMapper online server. The molecular docking was conducted using Auto-Dock 4.0 software to study the binding interactions of these compounds with the targets predicted by PharmMapper server. Results: The permeability properties for all compounds were found within the limit range stated for Lipinski׳s rule of five. Only Parthenolide proved to be able to penetrate through blood brain barrier. Isopentenyl-diphosphate delta-isomerase (IPPI), uridine-cytidine kinase-2 (UCK-2) and the mitogen-activated protein kinase kinase-1 (MEK-1) were proposed as potential targets for Hispidulin, Nepetin and Parthenolide, respectively. Nepetin and Parthenolide were predicted to have anticancer activities. The activity of Nepetin appeared to be mediated through UCK-2 inhibition. On the other hand, inhibition of MEK-1 and enhancement of TP53 expression were predicted as the anticancer mechanisms of Parthenolide. The three compounds showed interesting interactions and satisfactory binding energies when docked into their relevant targets. Conclusion: The ADMET profiles and biological activity spectra of Hispidulin, Nepetin and Parthenolide have been addressed. These compounds are proposed to have activities against a variety of human aliments such as tumors, muscular dystrophy, and diabetic cataracts.Keywords: Tarconanthus camphoratus L., Hispidulin, Nepetin, Parthenolide, In silico pharmacokinetic, Molecular docking, PharmMapper server, and Auto-Dock 4.0 softwareÂ

    Biopiracy <i>versus </i>one-world medicine – from colonial relicts to global collaborative concepts

    Get PDF
    Background: Practices of biopiracy to use genetic resources and indigenous knowledge by Western companies without benefit-sharing of those, who generated the traditional knowledge, can be understood as form of neocolonialism.Hypothesis: : The One-World Medicine concept attempts to merge the best of traditional medicine from developing countries and conventional Western medicine for the sake of patients around the globe.Study design: Based on literature searches in several databases, a concept paper has been written. Legislative initiatives of the United Nations culminated in the Nagoya protocol aim to protect traditional knowledge and regulate benefit-sharing with indigenous communities. The European community adopted the Nagoya protocol, and the corresponding regulations will be implemented into national legislation among the member states. Despite pleasing progress, infrastructural problems of the health care systems in developing countries still remain. Current approaches to secure primary health care offer only fragmentary solutions at best. Conventional medicine from industrialized countries cannot be afforded by the impoverished population in the Third World. Confronted with exploding costs, even health systems in Western countries are endangered to burst. Complementary and alternative medicine (CAM) is popular among the general public in industrialized countries, although the efficacy is not sufficiently proven according to the standards of evidence-based medicine. CAM is often available without prescription as over-the-counter products with non-calculated risks concerning erroneous self-medication and safety/toxicity issues. The concept of integrative medicine attempts to combine holistic CAM approaches with evidence-based principles of conventional medicine.Conclusion: To realize the concept of One-World Medicine, a number of standards have to be set to assure safety, efficacy and applicability of traditional medicine, e.g. sustainable production and quality control of herbal products, performance of placebo-controlled, double-blind, randomized clinical trials, phytovigilance, as well as education of health professionals and patients

    Multifactorial Modes of Action of Arsenic Trioxide in Cancer Cells as Analyzed by Classical and Network Pharmacology

    No full text
    Arsenic trioxide is a traditional remedy in Chinese Medicine since ages. Nowadays, it is clinically used to treat acute promyelocytic leukemia (APL) by targeting PML/RARA. However, the drug’s activity is broader and the mechanisms of action in other tumor types remain unclear. In this study, we investigated molecular modes of action by classical and network pharmacological approaches. CEM/ADR5000 resistance leukemic cells were similar sensitive to As2O3 as their wild-type counterpart CCRF-CEM (resistance ratio: 1.88). Drug-resistant U87.MG ΔEGFR glioblastoma cells harboring mutated epidermal growth factor receptor were even more sensitive (collateral sensitive) than wild-type U87.MG cells (resistance ratio: 0.33). HCT-116 colon carcinoma p53-/- knockout cells were 7.16-fold resistant toward As2O3 compared to wild-type cells. Forty genes determining cellular responsiveness to As2O3 were identified by microarray and COMPARE analyses in 58 cell lines of the NCI panel. Hierarchical cluster analysis-based heat mapping revealed significant differences between As2O3 sensitive cell lines and resistant cell lines with p-value: 1.86 × 10-5. The genes were subjected to Galaxy Cistrome gene promoter transcription factor analysis to predict the binding of transcription factors. We have exemplarily chosen NF-kB and AP-1, and indeed As2O3 dose-dependently inhibited the promoter activity of these two transcription factors in reporter cell lines. Furthermore, the genes identified here and those published in the literature were assembled and subjected to Ingenuity Pathway Analysis for comprehensive network pharmacological approaches that included all known factors of resistance of tumor cells to As2O3. In addition to pathways related to the anticancer effects of As2O3, several neurological pathways were identified. As arsenic is well-known to exert neurotoxicity, these pathways might account for neurological side effects. In conclusion, the activity of As2O3 is not restricted to acute promyelocytic leukemia. In addition to PML/RARA, numerous other genes belonging to diverse functional classes may also contribute to its cytotoxicity. Network pharmacology is suited to unravel the multifactorial modes of action of As2O3

    Substituted steroidal compounds containing amino and amido groups reverse multidrug resistance of mouse T-lymphoma and two human prostate cancer cell lines in vitro

    Get PDF
    BACKGROUND: Resistance to chemotherapy is a main problem in cancer. The search for new effective compounds that can increase sensitivity of resistant cells to existing chemotherapeutics is an urgent need. In previous studies, it has been demonstrated that steroid derivatives showed promising results concerning their capacity to modulate resistance of multidrug-resistant cell lines. MATERIALS AND METHODS: Steroid derivatives were studied for their growth-inhibitory effect, cytotoxicity, reversal of multidrug resistance, apoptosis induction, and interaction with doxorubicin on multidrug resistant human ATP-binding cassette, sub-family B, member 1 (ABCB1) gene-transfected mouse T-lymphoma cell line, and human PC-3 and LNCaP prostate cancer cell lines in vitro. The steroidal interaction with P-glycoprotein (ABCB1) was investigated by molecular docking. RESULTS: Both the activity of steroid derivatives on inhibition of the ABCB1 pump and their interaction with doxorubicin are dependent on the substituent groups of the investigated steroidal structures. Even though the investigated steroid derivatives were found to have limited antiproliferative effect on the three different cancer cell lines, in combination with doxorubicin, most of them acted as good potentiators. The binding energies from molecular docking ranged from -6.43 to -9.88 kcal/mol. The predicted inhibition constants ranged from 0.1 to 10.1 muM. A significant negative correlation was found between binding energy and fluorescence activity ratio (R=-0.5, p=0.015). CONCLUSION: The effective compounds can be candidates of model molecules for possible application in the treatment of multidrug resistant cancer in rational drug design

    Ca

    No full text
    From PubMed via Jisc Publications RouterHistory: received 2018-07-24, revised 2019-05-04, accepted 2019-05-12Publication status: aheadofprintCelastrol exhibits anti-arthritic effect in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca mobilization in treatment of RA remains unelucidated. Here, we illustrate the regulatory role of celastrol-induced Ca signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. Molecular target of celastrol was determined by computational docking, Ca dynamic and functional assays on SERCA. Ca -mediated autophagy in RASFs/RAFLS and the underlying mechanism were verified by quantification of endogenous LC3-II puncta, immunoblotting, and flow cytometry with the Ca chelator (BAPTA/AM) or suitable inhibitors. The anti-arthritic effect of celastrol, autophagy induction and growth rate of synovial fibroblasts in AIA rats were monitored by microCT and immunofluorescence staining. mRNA from joint tissues of AIA rats was isolated for transcriptional analysis of inflammatory genes. The role of Ca in regulating the identified genes was investigated by knockdown of calmodulin, calpains, and calcineurin. Celastrol inhibited SERCA to induce autophagy-dependent cytotoxicity in RASFs/RAFLS via CaMKKβ-AMPK-mTOR pathway and repressed arthritis symptoms in AIA rats. BAPTA/AM hampered the in vitro and in vivo effectiveness of celastrol. Inflammatory- and autoimmunity-associated genes downregulated by celastrol in joint tissues of AIA rat were restored by BAPTA/AM. Knockdown of calmodulin, calpains, and calcineurin in RAFLS confirmed the role of Ca in celastrol-regulated gene expression. Celastrol triggered Ca signalling to induce autophagic cell death in RASFs/RAFLS and ameliorated arthritis in AIA rats mediated by calcium-dependent/-binding proteins facilitating the exploitation of anti-arthritic drugs based on manipulation of Ca signalling. [Abstract copyright: This article is protected by copyright. All rights reserved.

    Biopiracy of natural products and good bioprospecting practice

    No full text
    Background: Biopiracy mainly focuses on the use of biological resources and/or knowledge of indigenous tribes or communities without allowing them to share the revenues generated out of economic exploitation or other non-monetary incentives associated with the resource/knowledge. Methods: Based on collaborations of scientists from five continents, we have created a communication platform to discuss not only scientific topics, but also more general issues with social relevance. This platform was termed ‘PhytCancer -Phytotherapy to Fight Cancer’ (www.phyt-cancer.uni-mainz.de). As a starting point, we have chosen the topic “biopiracy”, since we feel this is of pragmatic significance for scientists working with medicinal plants. Results: It was argued that the patenting of herbs or natural products by pharmaceutical corporations disregarded the ownership of the knowledge possessed by the indigenous communities on how these substances worked. Despite numerous court decisions in U.S.A. and Europe, several international treaties, (e.g. from United Nations, World Health Organization, World Trade Organization, the African Unity and others), sharing of a rational set of benefits amongst producers (mainly pharmaceutical companies) and indigenous communities is yet a distant reality. In this paper, we present an overview of the legal frameworks, discuss some exemplary cases of biopiracy and bioprospecting as excellent forms of utilization of natural resources. Conclusions: We suggest certain perspectives, by which we as scientists, may contribute towards prevention of biopiracy and also to foster the fair utilization of natural resources. We discuss ways, in which the interests of indigenous people especially from developing countries can be securedDeutsche Forschungsgemeinschaft/[GRK2015/1]//AlemaniaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET

    Biopiracy versus One-World Medicine–From colonial relicts to global collaborative concepts

    No full text
    corecore