56 research outputs found

    Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma

    Get PDF
    © Impact Journals, LLC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma.This study was supported by the Canadian Cancer Society (Grant #2011-70051), the Pediatric Brain Tumor Foundation of the United States, the Brain Tumour Foundation of Canada, Meagan’s Walk, b.r.a.i.n.child and the Wiley Fund at the Hospital for Sick Children.info:eu-repo/semantics/publishedVersio

    PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation

    Get PDF
    © 2017 The Authors. PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely un-known. Here we show that PARK2is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitricoxide synthase (eNOS), enhanced levels of reactiveoxygen species, and a concomitant increase inoxidized nitric oxide levels, thereby promoting theinhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylationin supporting cell survival and proliferation under conditions of energy deprivation.NIH P01-CA120964 (J.M.A. and L.C.C.) and R01-GM041890; Ministry of Education, Culture and Sport under the Program for Promoting and Hiring of Talent and its Employability (Subprogram for Mobility) of the Spanish Government; ICR; MRC grant MC_UP_1202/1

    Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells

    Get PDF
    Pediatric ependymomas are highly recurrent tumors resistant to conventional chemotherapy. Telomerase, a ribonucleoprotein critical in permitting limitless replication, has been found to be critically important for the maintenance of tumor-initiating cells (TICs). These TICs are chemoresistant, repopulate the tumor from which they are identified, and are drivers of recurrence in numerous cancers. In this study, telomerase enzymatic activity was directly measured and inhibited to assess the therapeutic potential of targeting telomerase. Telomerase repeat amplification protocol (TRAP) (n = 36) and C-circle assay/telomere FISH/ATRX staining (n = 76) were performed on primary ependymomas to determine the prevalence and prognostic potential of telomerase activity or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms, respectively. Imetelstat, a phase 2 telomerase inhibitor, was used to elucidate the effect of telomerase inhibition on proliferation and tumorigenicity in established cell lines (BXD-1425EPN, R254), a primary TIC line (E520) and xenograft models of pediatric ependymoma. Over 60 % of pediatric ependymomas were found to rely on telomerase activity to maintain telomeres, while no ependymomas showed evidence of ALT. Children with telomerase-active tumors had reduced 5-year progression-free survival (29 +/- A 11 vs 64 +/- A 18 %; p = 0.03) and overall survival (58 +/- A 12 vs 83 +/- A 15 %; p = 0.05) rates compared to those with tumors lacking telomerase activity. Imetelstat inhibited proliferation and self-renewal by shortening telomeres and inducing senescence in vitro. In vivo, Imetelstat significantly reduced subcutaneous xenograft growth by 40 % (p = 0.03) and completely abolished the tumorigenicity of pediatric ependymoma TICs in an orthotopic xenograft model. Telomerase inhibition represents a promising therapeutic approach for telomerase-active pediatric ependymomas found to characterize high-risk ependymomas.Canadian Institutes of Health Research [MOP 82727]info:eu-repo/semantics/publishedVersio

    The State of Neuro-Oncology During the COVID-19 Pandemic: A Worldwide Assessment

    Get PDF
    To assess the impact of the pandemic on the field, we performed an international web-based survey of practitioners, scientists, and trainees from 21 neuro-oncology organizations across 6 continents from April 24 through May 17. Of 582 respondents, 258 (45%) were in the US, and 314 (55%) were international. 80.4% were affiliated with academic institutions. 94% respondents reported changes in clinical practice; 95% reported conversion to telemedicine for at least some appointments. However, almost 10% practitioners felt the need to see patients in person specifically because of billing concerns and perceived institutional pressure. Over 50% believed neuro-oncology patients were at increased risk of contracting COVID-19. 67% practitioners suspended enrollment for at least one clinical trial: 53% suspended phase II and 62% suspended phase III trial enrollment. 71% clinicians feared for their or their families’ safety, specifically because of their clinical duties. 20% percent said they did not have enough PPE to work safely; about the same percentage were unhappy with their institutions’ response to the pandemic. 43% believed the pandemic would negatively affect their academic career, and 52% fellowship program directors were worried about losing funding for their training programs. While 69% respondents reported increased stress, 44% were offered no psychosocial support. 37% had their salary reduced. 36% researchers had to temporarily close their laboratories. In contrast, the pandemic created positive changes in perceived patient and family satisfaction, quality of communication, and use of technology to deliver care and interactions with other practitioners. CONCLUSIONS: The pandemic has altered standard treatment schedules and limited investigational treatment options for patients. In some cases, clinicians felt institutional pressure to continue conducting billable in-person visits when telemedicine visits would have sufficed. A lack of institutional support created anxiety among clinicians and researchers. We make specific recommendations to guide clinical and scientific infrastructure moving forward

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    GATA4 Represses Formation of Glioblastoma Multiforme

    No full text
    The GATA transcription factors consist of six family members that bind the consensus DNA binding element W-GATA-R, and are poorly characterized in the central nervous system (CNS). In this thesis we identify GATA4 to be expressed in the neurons and glia of normal murine and human embryonic and adult CNS with significant loss in Glioblastoma Multiforme (GBM). GBM is the most common and lethal primary brain tumour and exhibits multiple molecular aberrations. Here we report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumour suppressor gene. Although GATA4 was expressed in normal brain, loss of GATA4 was observed in GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor like phenotype, formation of neurospheres and the ability to differentiate into astrocytes, neurons and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures and brain tumour initiating cells suppressed tumour growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21CIP1, independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT, the DNA repair enzyme often implicated in temozolomide resistance. Instead GATA4 reduced expression of APNG, a DNA repair enzyme poorly characterized in GBM mediated temozolomide resistance. Identification and validation of GATA4 as a tumour suppressor gene and its downstream targets in GBM may yield promising novel therapeutic strategies.Ph

    An Update on Advancements and Challenges in Inhalational Drug Delivery for Pulmonary Arterial Hypertension

    No full text
    A lethal condition at the arterial&ndash;alveolar juncture caused the exhaustive remodeling of pulmonary arterioles and persistent vasoconstriction, followed by a cumulative augmentation of resistance at the pulmonary vascular and, consequently, right-heart collapse. The selective dilation of the pulmonary endothelium and remodeled vasculature can be achieved by using targeted drug delivery in PAH. Although 12 therapeutics were approved by the FDA for PAH, because of traditional non-specific targeting, they suffered from inconsistent drug release. Despite available inhalation delivery platforms, drug particle deposition into the microenvironment of the pulmonary vasculature and the consequent efficacy of molecules are influenced by pathophysiological conditions, the characteristics of aerosolized mist, and formulations. Uncertainty exists in peripheral hemodynamics outside the pulmonary vasculature and extra-pulmonary side effects, which may be further exacerbated by underlying disease states. The speedy improvement of arterial pressure is possible via the inhalation route because it has direct access to pulmonary arterioles. Additionally, closed particle deposition and accumulation in diseased tissues benefit the restoration of remolded arterioles by reducing fallacious drug deposition in other organs. This review is designed to decipher the pathological changes that should be taken into account when targeting the underlying pulmonary endothelial vasculature, especially with regard to inhaled particle deposition in the alveolar vasculature and characteristic formulations
    • …
    corecore