44 research outputs found

    Disruption of Life Insurance Profitability in the Aftermath of the COVID-19 Pandemic

    Get PDF
    5noopenLife insurance profitability depends on reliable mortality risk projections and pricing. While the COVID-19 pandemic has caused disruptions around the world, this is a temporary mortality shock likely to dissipate. In this paper, we investigate the long-run impact of COVID-19 on life insurance profitability. Due to the long-run dynamics of the mortality characterised by a decreasing effect of the COVID-19 mortality acceleration, we suggest proactive mortality risk management by implementing prompt premium adjustments, in order to increase the resilience of the business.openCarannante, M.; D’Amato, V.; Fersini, P.; Forte, S.; MelisiCarannante, M.; D’Amato, V.; Fersini, P.; Forte, S.; Melisi

    Machine learning due diligence evaluation to increase NPLs profitability transactions on secondary market

    Get PDF
    In this paper, we contribute to the topic of the non-performing loans (NPLs) business proftability on the secondary market by developing machine learning-based due diligence. In particular, a loan became non-performing when the borrower is unlikely to pay, and we use the ability of the ML algorithms to model complex relationships between predictors and outcome variables, we set up an ad hoc dependent random forest regressor algorithm for projecting the recovery rate of a portfolio of the secured NPLs. Indeed the proftability of the transactions under consideration depends on forecast models of the amount of net repayments expected from receivables and related collection times. Finally, the evaluation approach we provide helps to reduce the ”lemon discount” by pricing the risky component of informational asymmetry between better-informed banks and potential investors in particular for higher quality, collateralised NPLs

    PIEZOELECTRIC BONE SURGERY IN THE TREATMENT OF AN OSTEOMA ASSOCIATED WITH AN IMPACTED INFERIOR THIRD MOLAR: A CASE REPORT

    Get PDF
    Operative removal of impacted mandibular third molars is a common and not riskless surgical procedure. We present an emblematic case of an osteoma closely associated with an impacted third left mandibular molar treated by Mectron Piezosurgery medical ultrasonic device

    Towards Digital Twin Implementation for Assessing Production Line Performance and Balancing

    Get PDF
    The optimization of production processes has always been one of the cornerstones for manufacturing companies, aimed to increase their productivity, minimizing the related costs. In the Industry 4.0 era, some innovative technologies, perceived as far away until a few years ago, have become reachable by everyone. The massive introduction of these technologies directly in the factories allows interconnecting the resources (machines and humans) and the entire production chain to be kept under control, thanks to the collection and the analyses of real production data, supporting the decision making process. This article aims to propose a methodological framework that, thanks to the use of Industrial Internet of Things—IoT devices, in particular the wearable sensors, and simulation tools, supports the analyses of production line performance parameters, by considering both experimental and numerical data, allowing a continuous monitoring of the line balancing and performance at varying of the production demand. A case study, regarding a manual task of a real manufacturing production line, is presented to demonstrate the applicability and the effectiveness of the proposed procedure

    Cost-effectiveness analysis of personalised versus standard dosimetry for selective internal radiation therapy with TheraSphere in patients with hepatocellular carcinoma

    Get PDF
    Aims: To perform a cost-effectiveness analysis (CEA) comparing personalised dosimetry with standard dosimetry in the context of selective internal radiation therapy (SIRT) with TheraSphere for the management of adult patients with locally advanced hepatocellular carcinoma (HCC) from the Italian Healthcare Service perspective. Materials and methods: A partition survival model was developed to project costs and the quality-adjusted life years (QALYs) over a lifetime horizon. Clinical inputs were retrieved from a published randomised controlled trial. Health resource utilisation inputs were extracted from the questionnaires administered to clinicians in three oncology centres in Italy, respectively. Cost parameters were based on Italian official tariffs. Results: Over a lifetime horizon, the model estimated the average QALYs of 1.292 and 0.578, respectively, for patients undergoing personalised and standard dosimetry approaches. The estimated mean costs per patient were €23,487 and €19,877, respectively. The incremental cost-utility ratio (ICUR) of personalised versus standard dosimetry approaches was €5,056/QALY. Conclusions: Personalised dosimetry may be considered a cost-effective option compared to standard dosimetry for patients undergoing SIRT for HCC in Italy. These findings provide evidence for clinicians and payers on the value of personalised dosimetry as a treatment option for patients with HCC

    PharmaCare 2018

    Get PDF
    [Italiano]: Il farmaco, nella sua accezione più ampia e generale, può essere ritenuto un bene sociale, la cui valenza simbolica e curativa varia in relazione alla dimensione ambientale e culturale nel quale si inserisce. In tal senso, le prescrizioni farmaceutiche rappresentano un indicatore privilegiato per la conoscenza del sistema salute di un determinato territorio, poiché costituiscono un punto di intersezione ideale tra la prospettiva medica e quella di mercato. Siffatte considerazioni hanno sollecitato l’elaborazione di questo Report che si pone, come obiettivi dichiarati, quello di essere uno strumento utile alla pianificazione di interventi di sanità pubblica, quanto quello di svolgere analisi approfondite sulle caratteristiche dei soggetti che usano i farmaci e sulle modalità di trattamento degli stessi, permettendo studi di appropriatezza prescrittiva su specifiche aree di rilevanza clinica e su specifiche coorti di soggetti. “PharmaCaRe Report 2018” è stato realizzato dal CIRFF (Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione) dell’Università degli Studi di Napoli Federico II, in collaborazione con la Direzione Generale della Tutela della Salute della Regione Campania, per delineare un quadro dettagliato circa il consumo e la prescrizione dei farmaci in Campania nel 2018. Questo Report intende infatti fornire una fotografia dettagliata dell’utilizzo che, in Campania, viene fatto dei farmaci in termini di spesa, volumi e tipologia. Le analisi dei dati prodotte offrono spunti importanti per correlare la prevalenza delle patologie nel territorio con il corrispondente utilizzo dei farmaci e suggeriscono un’interpretazione dei principali fattori che influenzano la variabilità nella prescrizione. La disponibilità di una banca dati che copre una popolazione assistibile di circa sei milioni di abitanti è d’altronde un potente strumento di ricerca per studiare gli effetti dell’utilizzo dei farmaci in condizioni di Real-World. La conoscenza delle dinamiche prescrittive, in termini qualitativi (appropriatezza d’uso), oltre che quantitativi (volumi di utilizzo) è la condizione necessaria per inquadrare in un contesto razionale la politica del farmaco, anche sotto il profilo della valutazione degli effetti degli interventi che il mercato, le normative o la cultura del farmaco sviluppano nel tempo. Per tali ragioni, “PharmaCaRe Report 2018” rappresenta un utile quanto prezioso supporto ai decisori per individuare strategie volte a ottimizzare l’allocazione delle risorse, nonché migliorare i percorsi di cura attraverso un monitoraggio costante, la promozione di più elevati standard di cura e l’uso sicuro, efficiente ed efficace dei farmaci ./[English]: In its broadest and most general sense, the drug can be considered a public resource, whose symbolic and curative value varies in relation to the environmental and cultural dimension in which it is embedded. In this sense, pharmaceutical prescriptions represent a privileged indicator for the knowledge of the health system of a given territory, since they constitute an ideal intersection point between the medical and the market perspective. Such considerations prompted the preparation of this Report. “PharmaCaRe Report 2018” has been produced by CIRFF (Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione) of the Federico II University of Naples, in collaboration with the Directorate-General for Health Protection of the Campania Region, to provide a detailed overview of the pharmaceutical consumption and prescriptions in Campania in 2018. This Report aims to provide a detailed picture of the use of medicines in the general population in Campania, in terms of expenditure, volumes and type. The analyses of the data produced offer important clues for correlating the prevalence of diseases in this area with the respective use of medicines and suggest an interpretation of the main factors influencing prescriptions' variability. The availability of a database covering a patient population of around six million is a powerful research tool for studying the effects of drug use in Real-World conditions. Knowledge of the dynamics of prescription, in qualitative terms (appropriateness of use), as well as quantitative (volumes of use) is the necessary condition to frame the drug policy in a rational context, also in terms of evaluating the effects of the interventions that the market, regulations or drug culture develop over time. For these reasons, “PharmaCaRe Report 2018” represents a useful and valuable tool for political decision-makers in identifying strategies aimed at optimizing the allocation of resources, as well as improving care pathways through constant monitoring, the promotion of higher standards of care and safe, efficient and effective use of drugs

    Staging of osteonecrosis of the jaw requires computed tomography for accurate definition of the extent of bony disease

    Get PDF
    Management of osteonecrosis of the jaw associated with antiresorptive agents is challenging, and outcomes are unpredictable. The severity of disease is the main guide to management, and can help to predict prognosis. Most available staging systems for osteonecrosis, including the widely-used American Association of Oral and Maxillofacial Surgeons (AAOMS) system, classify severity on the basis of clinical and radiographic findings. However, clinical inspection and radiography are limited in their ability to identify the extent of necrotic bone disease compared with computed tomography (CT). We have organised a large multicentre retrospective study (known as MISSION) to investigate the agreement between the AAOMS staging system and the extent of osteonecrosis of the jaw (focal compared with diffuse involvement of bone) as detected on CT. We studied 799 patients with detailed clinical phenotyping who had CT images taken. Features of diffuse bone disease were identified on CT within all AAOMS stages (20%, 8%, 48%, and 24% of patients in stages 0, 1, 2, and 3, respectively). Of the patients classified as stage 0, 110/192 (57%) had diffuse disease on CT, and about 1 in 3 with CT evidence of diffuse bone disease was misclassified by the AAOMS system as having stages 0 and 1 osteonecrosis. In addition, more than a third of patients with AAOMS stage 2 (142/405, 35%) had focal bone disease on CT. We conclude that the AAOMS staging system does not correctly identify the extent of bony disease in patients with osteonecrosis of the jaw

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N
    corecore