6 research outputs found

    A New Optimized Hybrid Model Based On COCOMO to Increase the Accuracy of Software Cost Estimation

    Get PDF
    The literature review shows software development projects often neither meet time deadlines, nor run within the allocated budgets. One common reason can be the inaccurate cost estimation process, although several approaches have been proposed in this field. Recent research studies suggest that in order to increase the accuracy of this process, estimation models have to be revised. The Constructive Cost Model (COCOMO) has often been referred as an efficient model for software cost estimation. The popularity of COCOMO is due to its flexibility; it can be used in different environments and it covers a variety of factors. In this paper, we aim to improve the accuracy of cost estimation process by enhancing COCOMO model. To this end, we analyze the cost drivers using meta-heuristic algorithms. In this method, the improvement of COCOMO is distinctly done by effective selection of coefficients and reconstruction of COCOMO. Three meta-heuristic optimization algorithms are applied synthetically to enhance the process of COCOMO model. Eventually, results of the proposed method are compared to COCOMO itself and other existing models. This comparison explicitly reveals the superiority of the proposed method

    Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate

    Get PDF
    The growing interest in thermal comfort of outdoor environments yields in different analysis on courtyards as a common space between urban and architectural scales. However, there is a limited knowledge regarding the microclimatic behavior of such spaces. Using ENVI-met simulations, this paper aims to numerically discuss the thermal performance of different configurations of traditionally designed courtyards in Shiraz, Iran, which experiences hot summers and cold winters. The geometrical effects such as orientation and H/W (height to width ratio) of courtyards are considered as potential parameters to improve the microclimatic conditions. In this paper, PMV and UTCI are used as thermal comfort indices. The obtained results indicate mean radiant temperature and wind speed as the most effective parameters for thermal comfort of courtyards. In addition, the aforementioned geometrical parameters might not be able to solely create a desirable condition, but they could significantly improve the thermal comfort of courtyards during summer and winter. To achieve a desirable thermal comfort level, the results suggest using configurations of a high H/W rate and southward orientation in order to obtain better shading during summer as well as allowing the solar radiation in while regulating the wind speed in winter

    Customizing well-known sustainability assessment tools for Iranian residential buildings using Fuzzy Analytic Hierarchy Process

    No full text
    corecore