81 research outputs found

    Modeling Algae Powered Neighborhood Through GIS and BIM Integration

    Get PDF
    This paper aims to propose a modeling method for algae powered neighborhoods through GIS-BIM integration. In the first part of the paper, the applicability of different types of algae systems in an urban neighborhood are studied. The various systems of algae provide different strengths and weakness that affect their performance and suitability for given urban scenarios. Through extensive literature review, the variables that affect the performance of the micro-algae in the built environment are identified, with a focus on flat-panel photo bio-reactors and tubular photobioreactors. A previous GIS model for data management, performance analysis and design of the algae systems is reviewed [1], which shows its limitations in managing fine-grained structures and functions of algae systems. A bottom-up BIM approach to deal with these limitations is further explored. The algae-embedded built environment can be modeled in the parametric 3D BIM and Rhinoceros with a set of building parameters for the roof, façade, window to wall ratio, etc. Subsequently, solar exposure on building surfaces, the use of the buildings and their respective façade types would be studied. Parametric 3D models of the buildings allows for faster design modification and the creation of multiple design options. These models can be used to perform energy analysis using the parametric energy analysis tool to check for building energy use intensity (EUI). The bottom-up approach explored in this research design aims to facilitate visualization and analysis of the built environment and gauge the productivity of microalgae. Finally, a platform for BIM –GIS integration and its possibility is explored in this paper. © 2017 The Authors

    The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations

    Full text link
    In scheduling, estimations are affected by the imprecision of limited information on future events, and the reduction in the number and level of detail of activities. Overlapping of processes and activities requires the study of their continuity, along with analysis of the risks associated with imprecision. In this line, this paper proposes a fuzzy heuristic model for the Project Scheduling Problem with flows and minimal feeding, time and work Generalized Precedence Relations with a realistic approach to overlapping, in which the continuity of processes and activities is allowed in a discretionary way. This fuzzy algorithm handles the balance of process flows, and computes the optimal fragmentation of tasks, avoiding the interruption of the critical path and reverse criticality. The goodness of this approach is tested on several problems found in the literature; furthermore, an example of a 15-story building was used to compare the better performance of the algorithm implemented in Visual Basic for Applications (Excel) over that same example input in Primavera© P6 Professional V8.2.0, using five different scenarios.This research was supported by the FAPA program of Universidad de Los Andes, Colombia. The authors would like to thank the research group of Construction Engineering and Management (INgeco) of Universidad de Los Andes, and the five anonymous referees for their helpful and constructive suggestions.Ponz Tienda, JL.; Pellicer Armiñana, E.; Benlloch Marco, J.; Andrés Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering. 30(11):872-891. doi:10.1111/mice.12166S8728913011Adeli, H., & Park, H. S. (1995). Optimization of space structures by neural dynamics. Neural Networks, 8(5), 769-781. doi:10.1016/0893-6080(95)00026-vAdeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18)Alarcón, L. F., Ashley, D. B., de Hanily, A. S., Molenaar, K. R., & Ungo, R. (2011). Risk Planning and Management for the Panama Canal Expansion Program. Journal of Construction Engineering and Management, 137(10), 762-771. doi:10.1061/(asce)co.1943-7862.0000317Ammar, M. A. (2013). LOB and CPM Integrated Method for Scheduling Repetitive Projects. Journal of Construction Engineering and Management, 139(1), 44-50. doi:10.1061/(asce)co.1943-7862.0000569Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.xBai, L., Yan, L., & Ma, Z. M. (2014). Querying fuzzy spatiotemporal data using XQuery. Integrated Computer-Aided Engineering, 21(2), 147-162. doi:10.3233/ica-130454Ballesteros-Pérez, P., González-Cruz, M. C., Cañavate-Grimal, A., & Pellicer, E. (2013). Detecting abnormal and collusive bids in capped tendering. Automation in Construction, 31, 215-229. doi:10.1016/j.autcon.2012.11.036Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199-240. doi:10.1007/bf02283745Bianco, L., & Caramia, M. (2011). Minimizing the completion time of a project under resource constraints and feeding precedence relations: a Lagrangian relaxation based lower bound. 4OR, 9(4), 371-389. doi:10.1007/s10288-011-0168-6Bonnal, P., Gourc, D., & Lacoste, G. (2004). Where Do We Stand with Fuzzy Project Scheduling? Journal of Construction Engineering and Management, 130(1), 114-123. doi:10.1061/(asce)0733-9364(2004)130:1(114)Brunelli, M., & Mezei, J. (2013). How different are ranking methods for fuzzy numbers? A numerical study. International Journal of Approximate Reasoning, 54(5), 627-639. doi:10.1016/j.ijar.2013.01.009Buckley, J. J., & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. doi:10.1007/978-3-7908-1799-7Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., & Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135(10), 1096-1104. doi:10.1061/(asce)0733-9364(2009)135:10(1096)Chanas, S., & Kamburowski, J. (1981). The use of fuzzy variables in pert. Fuzzy Sets and Systems, 5(1), 11-19. doi:10.1016/0165-0114(81)90030-0In Seong Chang, Yasuhiro Tsujimura, Mitsuo Gen, & Tatsumi Tozawa. (1995). An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets and Systems, 76(3), 277-288. doi:10.1016/0165-0114(94)00385-4Chen, C.-T., & Huang, S.-F. (2007). Applying fuzzy method for measuring criticality in project network. Information Sciences, 177(12), 2448-2458. doi:10.1016/j.ins.2007.01.035Shyi-Ming Chen, & Tao-Hsing Chang. (2001). Finding multiple possible critical paths using fuzzy PERT. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 31(6), 930-937. doi:10.1109/3477.969496Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038Dell’Orco, M., & Mellano, M. (2013). A New User-Oriented Index, Based on a Fuzzy Inference System, for Quality Evaluation of Rural Roads. Computer-Aided Civil and Infrastructure Engineering, 28(8), 635-647. doi:10.1111/mice.12021Deng, H. (2014). Comparing and ranking fuzzy numbers using ideal solutions. Applied Mathematical Modelling, 38(5-6), 1638-1646. doi:10.1016/j.apm.2013.09.012De Reyck, B., & Herroelen, willy. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152-174. doi:10.1016/s0377-2217(97)00305-6De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 119(2), 538-556. doi:10.1016/s0377-2217(99)00151-4Dubois, D., Fargier, H., & Galvagnon, V. (2003). On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research, 147(2), 266-280. doi:10.1016/s0377-2217(02)00560-xElmaghraby, S. E., & Kamburowski, J. (1992). The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs). Management Science, 38(9), 1245-1263. doi:10.1287/mnsc.38.9.1245Fondahl , J. W. 1961 A Non-Computer Approach to the Critical Path Method for the Construction IndustryFougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Gil-Aluja, J. (2004). Fuzzy Sets in the Management of Uncertainty. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39699-4Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-5951-8Harris, R. B., & Ioannou, P. G. (1998). Scheduling Projects with Repeating Activities. Journal of Construction Engineering and Management, 124(4), 269-278. doi:10.1061/(asce)0733-9364(1998)124:4(269)Hejducki, Z. (2004). Sequencing problems in methods of organising construction processes. Engineering, Construction and Architectural Management, 11(1), 20-32. doi:10.1108/09699980410512638Hebert, J. E., & Deckro, R. F. (2011). Combining contemporary and traditional project management tools to resolve a project scheduling problem. Computers & Operations Research, 38(1), 21-32. doi:10.1016/j.cor.2009.12.004Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002IBM 1968Jahani, E., Muhanna, R. L., Shayanfar, M. A., & Barkhordari, M. A. (2013). Reliability Assessment with Fuzzy Random Variables Using Interval Monte Carlo Simulation. Computer-Aided Civil and Infrastructure Engineering, 29(3), 208-220. doi:10.1111/mice.12028Karim, A., & Adeli, H. (1999). OO Information Model for Construction Project Management. Journal of Construction Engineering and Management, 125(5), 361-367. doi:10.1061/(asce)0733-9364(1999)125:5(361)Karim, A., & Adeli, H. (1999). CONSCOM: An OO Construction Scheduling and Change Management System. Journal of Construction Engineering and Management, 125(5), 368-376. doi:10.1061/(asce)0733-9364(1999)125:5(368)KARIM, A., & ADELI, H. (1999). A new generation software for construction scheduling and management. Engineering, Construction and Architectural Management, 6(4), 380-390. doi:10.1108/eb021126Kim, S.-G. (2012). CPM Schedule Summarizing Function of the Beeline Diagramming Method. Journal of Asian Architecture and Building Engineering, 11(2), 367-374. doi:10.3130/jaabe.11.367Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Mathematical Programming, 103(3), 515-539. doi:10.1007/s10107-004-0551-6Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1Krishnan, V., Eppinger, S. D., & Whitney, D. E. (1997). A Model-Based Framework to Overlap Product Development Activities. Management Science, 43(4), 437-451. doi:10.1287/mnsc.43.4.437LEACHMAN, R. C., DTNCERLER, A., & KIM, S. (1990). Resource-Constrained Scheduling of Projects with Variable-Intensity Activities. IIE Transactions, 22(1), 31-40. doi:10.1080/07408179008964155Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073Long, L. D., & Ohsato, A. (2008). Fuzzy critical chain method for project scheduling under resource constraints and uncertainty. International Journal of Project Management, 26(6), 688-698. doi:10.1016/j.ijproman.2007.09.012Lootsma, F. A. (1989). Stochastic and fuzzy Pert. European Journal of Operational Research, 43(2), 174-183. doi:10.1016/0377-2217(89)90211-7Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a Technique for Research and Development Program Evaluation. Operations Research, 7(5), 646-669. doi:10.1287/opre.7.5.646Maravas, A., & Pantouvakis, J.-P. (2011). Fuzzy Repetitive Scheduling Method for Projects with Repeating Activities. Journal of Construction Engineering and Management, 137(7), 561-564. doi:10.1061/(asce)co.1943-7862.0000319PONZ TIENDA, J. L., BENLLOCH MARCO, J., ANDRÉS ROMANO, C., & SENABRE, D. (2011). Un algoritmo matricial RUPSP / GRUPSP «sin interrupción» para la planificación de la producción bajo metodología Lean Construction basado en procesos productivos. Revista de la construcción, 10(2), 90-103. doi:10.4067/s0718-915x2011000200009Ponz-Tienda, J. L., Pellicer, E., & Yepes, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University SCIENCE A, 13(1), 56-68. doi:10.1631/jzus.a1100160Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003Prade, H. (1979). Using fuzzy set theory in a scheduling problem: A case study. Fuzzy Sets and Systems, 2(2), 153-165. doi:10.1016/0165-0114(79)90022-8Quintanilla, S., Pérez, Á., Lino, P., & Valls, V. (2012). Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres. European Journal of Operational Research, 219(1), 59-72. doi:10.1016/j.ejor.2011.12.018Rommelfanger, H. J. (1994). Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems, 67(1), 119-128. doi:10.1016/0165-0114(94)90212-7Senouci, A. B., & Adeli, H. (2001). Resource Scheduling Using Neural Dynamics Model of Adeli and Park. Journal of Construction Engineering and Management, 127(1), 28-34. doi:10.1061/(asce)0733-9364(2001)127:1(28)Seppänen, O., Evinger, J., & Mouflard, C. (2014). Effects of the location-based management system on production rates and productivity. Construction Management and Economics, 32(6), 608-624. doi:10.1080/01446193.2013.853881Shi, Q., & Blomquist, T. (2012). A new approach for project scheduling using fuzzy dependency structure matrix. International Journal of Project Management, 30(4), 503-510. doi:10.1016/j.ijproman.2011.11.003Srour, I. M., Abdul-Malak, M.-A. U., Yassine, A. A., & Ramadan, M. (2013). A methodology for scheduling overlapped design activities based on dependency information. Automation in Construction, 29, 1-11. doi:10.1016/j.autcon.2012.08.001Valls, V., & Lino, P. (2001). Annals of Operations Research, 102(1/4), 17-37. doi:10.1023/a:1010941729204Valls, V., Mart�, R., & Lino, P. (1996). A heuristic algorithm for project scheduling with splitting allowed. Journal of Heuristics, 2(1), 87-104. doi:10.1007/bf00226294Wang, Y.-M., Yang, J.-B., Xu, D.-L., & Chin, K.-S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157(7), 919-926. doi:10.1016/j.fss.2005.11.006Wiest, J. D. (1981). Precedence diagramming method: Some unusual characteristics and their implications for project managers. Journal of Operations Management, 1(3), 121-130. doi:10.1016/0272-6963(81)90015-2Yan, L., & Ma, Z. M. (2013). Conceptual design of object-oriented databases for fuzzy engineering information modeling. Integrated Computer-Aided Engineering, 20(2), 183-197. doi:10.3233/ica-130427Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic Method-Based Particle Swarm Optimization for a Queuing Network Problem with Fuzzy Data in Concrete Transportation Systems. Computer-Aided Civil and Infrastructure Engineering, 29(10), 771-800. doi:10.1111/mice.12111Zhang, X., Li, Y., Zhang, S., & Schlick, C. M. (2013). Modelling and simulation of the task scheduling behavior in collaborative product development process. Integrated Computer-Aided Engineering, 20(1), 31-44. doi:10.3233/ica-12041

    B2B e -Work Intranet solution design for rebar supply interactions

    No full text
    The workflow of rebar during design, estimation, bidding, revision and procurement is very critical for the subsequent stages of the construction project. This thesis concentrates in the development of a B2B e-Work solution for the integration of the rebar supply interactions. The expectations from potential users regarding this type of system are analyzed, as well as their satisfaction when exposed to the functionality of the proposed system. The B2B e-Work solution is composed of not only the electronic tools that are presently directing e-Commerce transactions over the Internet, but of the new approaches in information exchange and integration as well as communication and conflict resolution protocols. The transition in electronic data management technologies is studied, as well as rebar estimation and revision practices and trends for e-Business in application to these practices. Conducted experiments lead to establishing the relationships between expectations and satisfaction for the B2B e-Work system, categorizing these relationships in accordance with the type of firm (e.g. designer, contractor or rebar supplier), experience with rebar design or estimation, prevailing type of construction (e.g. residential, commercial or industrial) and use of CAD components extracted from previous design of structural drawings

    Feasibility of Ammonia-Powered Houses

    No full text
    Presented on February 26, 2009 from 11:00 am to 12:00 noon in the Georgia Tech Architecture Library.Runtime: 41:14 minutesDaniel Castro-Lacouture, Assistant Professor, Building Construction, teaches courses in construction cost management and estimating. His current research focuses on the applicability and design of B2B e-work solutions for construction processes, sustainability, and automation in construction

    Optimal Crew Design for Masonry Construction Projects Considering Contractors' Requirements and Workers' Needs

    No full text
    Masonry construction is labor intensive. Its operations involve little to no mechanization and require a large number of crews made up of workers with diverse skills. Relationships among crews are tight and very dependent. Often tasks have to be completed concurrently, and crews have to share resources and workspace to complete their work. One of the problems masonry contractors face is the need to design crews, that is, determine the number of crews and the composition of each crew to be used effectively in the construction process to maximize workflow. This study proposes a mixed integer optimization model to assist contractors in the allocation of crews in masonry projects. To address realistic scenarios experienced by the contractors on masonry construction jobsites, the model incorporates the rules that contractors use for crew design and makeup, as well as time constraints. In addition, the model considers workers' needs, such as labor stability. The proposed model can be a valuable tool to assist masonry stakeholders in the process of allocating crews while meeting contractor's requirements and workers' needs

    Dynamic decision support framework for production scheduling using a combined genetic algorithm and multiagent model

    Full text link
    Due to the dynamic nature, complexity, and interactivity of production scheduling in an actual business environment, suitable combined and hybrid methods are necessary. This paper takes prefabricated concrete components as an example and develops the dynamic decision support framework based on a genetic algorithm and multiagent system (MAS) to optimize and simulate the production scheduling. First, a multiobjective genetic algorithm is integrated into the MAS for preliminary optimization and a series of near-optimal solutions are obtained. Subsequently, considering the resource constraints and uncertainties, the MAS is used to simulate complex real-world production environments. Considering the different types of uncertainty factors, the paper proposes the corresponding dynamic scheduling method and uses MAS to generate the optimal production schedule. Finally, a practical prefabricated construction case is used to validate the proposed model. The results show that the model can effectively address the occurrence of uncertain events and can provide dynamic decision support for production scheduling

    Multi-agent simulation for managing design changes in prefabricated construction projects

    Full text link
    Purpose The purpose of this paper is to develop a multi-agent-based model for quantitatively measuring how the design change management strategies improve project performance. Design/methodology/approach Based on questionnaires and interviews, this paper investigates the coordination mechanism of risks due to design changes in prefabricated construction (PC) projects. Combined with all the variables related with design change risks, a multi-agent-based simulation model is proposed to evaluate the design change management effect. Findings The coordination mechanism between design change factors, design change events, risk consequence and management strategy in PC projects is described and then the simulation-based design change management mechanism in PC projects is used to assess the effect of management strategies under dynamic scenarios. Originality/value PC projects have rapidly increased in recent years due to the advantages of fast construction, high quality and labor savings. Different from traditional on-site construction, the impact and risk from design changes are likely to be greater due to the prefabricated project being multi-stage, highly interactive and complex. The simulations presented in this paper make it possible to test different design change management strategies in order to study their effectiveness and support managerial decision making. </jats:sec
    corecore