8 research outputs found

    On the Commonality of 10-30AU Sized Axisymmetric Dust Structures in Protoplanetary Disks

    Get PDF
    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ~axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines

    Observations of gas flows inside a protoplanetary gap

    Get PDF
    Gaseous giant planet formation is thought to occur in the first few million years following stellar birth. Models predict that giant planet formation carves a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD142527, at ~140pc, found an inner disk ~10AU in radius, surrounded by a particularly large gap, with a disrupted outer disk beyond 140AU, indicative of a perturbing planetary-mass body at ~90 AU. From radio observations, the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The vigorous stellar accretion rate would deplete the inner disk in less than a year, so in order to sustain the observed accretion, matter must flow from the outer-disk into the cavity and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations with the Atacama Large Millimetre Array (ALMA) that reveal diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments, and that confirm the horseshoe morphology of the outer disk. The estimated flow rate of the gas is in the range 7E-9 to 2E-7 Msun/yr, which is sufficient to maintain accretion onto the star at the present rate

    First detection of gas-phase ammonia in a planet-forming disk NH_3, N_2H^+, and H_2O in the disk around TW Hydrae

    Get PDF
    Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH_3, NH_4^+ and OCN^−. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods. Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH_3 in a protoplanetary disk around TW Hya. We used detailed models of the disk’s physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results. The NH_31_0–0_0 line is detected simultaneously with H_2O 1_(10)–1_(01) at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N_2H^+ 6–5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7−11.0 × 10^(21) g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2−16.0 × 10^(22) g, improving upon earlier literature estimates This corresponds to NH_3/H_2O abundance ratios of 7%−84%, assuming that water and ammonia are co-located. The inferred N_2H^+ gas mass of 4.9 × 10^(21) g agrees well with earlier literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2−17.0 × 10^(-11), 0.1−9.0 × 10^(-10) and 7.6 × 10^(-11) for NH_3, H_2O and N_2H^+ respectively. Conclusions. Only in the most compact and settled adopted configuration is the inferred NH_3/H_2O consistent with interstellar ices and solar system bodies of ~5%–10%; all other spatial distributions require additional gas-phase NH_3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies

    First detection of gas-phase ammonia in a planet-forming disk. NH₃, N₂H⁺, and H₂O in the disk around TW Hydrae

    Get PDF
    Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH3, NH4+ and OCN−. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods. Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH3 in a protoplanetary disk around TW Hya. We used detailed models of the disk’s physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results. The NH310–00 line is detected simultaneously with H2O 110–101 at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N2H+ 6–5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7−11.0 × 1021 g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2−16.0 × 1022 g, improving upon earlier literature estimates This corresponds to NH3/H2O abundance ratios of 7%−84%, assuming that water and ammonia are co-located. The inferred N2H+ gas mass of 4.9 × 1021 g agrees well with earlier literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2−17.0 × 10-11, 0.1−9.0 × 10-10 and 7.6 × 10-11 for NH3, H2O and N2H+ respectively. Conclusions. Only in the most compact and settled adopted configuration is the inferred NH3/H2O consistent with interstellar ices and solar system bodies of ~5%–10%; all other spatial distributions require additional gas-phase NH3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies

    Steepening of the 820

    Get PDF
    Context. Grain growth in planet-forming disks is the first step toward the formation of planets. The growth of grains and their inward drift leaves a distinct imprint on the dust surface density distribution and the resulting surface brightness profile of the thermal continuum emission. Aims. We determine the surface brightness profile of the continuum emission using resolved observations at millimeter wavelengths of the disk around TW Hya, and infer the signature of dust evolution on the surface density and dust opacity. Methods. Archival ALMA observations at 820 μm on baselines up to 410 kλ are compared to parameterized disk models to determine the surface brightness profile. Results. Under the assumption of a constant dust opacity, a broken radial power law best describes the dust surface density with a slope of −0.53 ± 0.01 from the 4.1 au radius of the already known inner hole to a turn-over radius of 47.1 ± 0.2 au, steepening to −8.0 ± 0.1 at larger radii. The emission drops below the detection limit beyond ~60 au. Conclusions. The shape of the dust surface density is consistent with theoretical expectations for grain growth, fragmentation, and drift, but its total dust content and its turn-over radius are too large for TW Hya’s age of 8–10 Myr even when taking into account a radially varying dust opacity. Higher resolution imaging with ALMA of TW Hya and other disks is required to establish whether unseen gaps associated with, e.g., embedded planets trap grains at large radii or whether locally enhanced grain growth associated with the CO snow line explains the extent of the millimeter continuum surface brightness profile. In the latter case, population studies should reveal a correlation between the location of the CO snow line and the extent of the millimeter continuum. In the former case, and if CO freeze-out promotes planet formation, this correlation should extend to the location of gaps as well

    Characterization of low-mass companion HD 142527 B

    Get PDF
    The circumstellar disk of the Herbig Fe star HD 142527 is host to several remarkable features including a warped inner disk, a 120 au-wide annular gap, a prominent dust trap and several spiral arms. A low-mass companion, HD 142527 B, was also found orbiting the primary star at ~14 au. This study aims to better characterize this companion, which could help explain its impact on the peculiar geometry of the disk. We observed the source with VLT/SINFONI in H+K band in pupil-tracking mode. Data were post-processed with several algorithms based on angular differential imaging (ADI). HD 142527 B is conspicuously re-detected in most spectral channels, which enables us to extract the first medium-resolution spectrum of a low-mass companion within 0.1'' from its central star. Fitting our spectrum with both template and synthetic spectra suggests that the companion is a young M2.5+-1.0 star with an effective temperature of 3500+-100 K, possibly surrounded with a hot (1700 K) circum-secondary environment. Pre-main sequence evolutionary tracks provide a mass estimate of 0.34+-0.06 MSun, independent of the presence of a hot environment. However, the estimated stellar radius and age do depend on that assumption; we find a radius of 1.37+-0.05 RSun (resp. 1.96+-0.10 RSun) and an age of ~1.8Myr (resp. ~0.75Myr) in the case of the presence (resp. absence) of a hot environment contributing in H+K. Our new values for the mass and radius of the companion yield a mass accretion rate of 2--3% that of the primary. We have constrained the physical properties of HD 142527 B, thereby illustrating the potential for SINFONI+ADI to characterize faint close-in companions. The new spectral type makes HD 142527 B a twin of the well known TW Hya T-Tauri star, and the revision of its mass to higher values further supports its role in shaping the disk
    corecore