5,570 research outputs found

    Standard General Relativity from Chern-Simons Gravity

    Get PDF
    Chern-Simons models for gravity are interesting because they provide with a truly gauge-invariant action principle in the fiber-bundle sense. So far, their main drawback has largely been the perceived remoteness from standard General Relativity, based on the presence of higher powers of the curvature in the Lagrangian (except, remarkably, for three-dimensional spacetime). Here we report on a simple model that suggests a mechanism by which standard General Relativity in five-dimensional spacetime may indeed emerge at a special critical point in the space of couplings, where additional degrees of freedom and corresponding "anomalous" Gauss-Bonnet constraints drop out from the Chern-Simons action. To achieve this result, both the Lie algebra g and the symmetric g-invariant tensor that define the Chern-Simons Lagrangian are constructed by means of the Lie algebra S-expansion method with a suitable finite abelian semigroup S. The results are generalized to arbitrary odd dimensions, and the possible extension to the case of eleven-dimensional supergravity is briefly discussed.Comment: 6 pages, no figures; v2: published versio

    Dual Formulation of the Lie Algebra S-expansion Procedure

    Full text link
    The expansion of a Lie algebra entails finding a new, bigger algebra G, through a series of well-defined steps, from an original Lie algebra g. One incarnation of the method, the so-called S-expansion, involves the use of a finite abelian semigroup S to accomplish this task. In this paper we put forward a dual formulation of the S-expansion method which is based on the dual picture of a Lie algebra given by the Maurer-Cartan forms. The dual version of the method is useful in finding a generalization to the case of a gauge free differential algebra, which in turn is relevant for physical applications in, e.g., Supergravity. It also sheds new light on the puzzling relation between two Chern-Simons Lagrangians for gravity in 2+1 dimensions, namely the Einstein-Hilbert Lagrangian and the one for the so-called "exotic gravity".Comment: 12 pages, no figure

    Even-dimensional topological gravity from Chern-Simons gravity

    Full text link
    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the 2n+1-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a 2n+1-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field Ď•a\phi^{a}, which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1)

    Religious leaders\u27 perceptions of advance care planning: a secondary analysis of interviews with Buddhist, Christian, Hindu, Islamic, Jewish, Sikh and Bahai leaders

    Get PDF
    Background: International guidance for advance care planning (ACP) supports the integration of spiritual and religious aspects of care within the planning process. Religious leaders’ perspectives could improve how ACP programs respect patients’ faith backgrounds. This study aimed to examine: (i) how religious leaders understand and consider ACP and its implications, including (ii) how religion affects followers’ approaches to end-of-life care and ACP, and (iii) their implications for healthcare. Methods: Interview transcripts from a primary qualitative study conducted with religious leaders to inform an ACP website, ACPTalk, were used as data in this study. ACPTalk aims to assist health professionals conduct sensitive conversations with people from different religious backgrounds. A qualitative secondary analysis conducted on the interview transcripts focussed on religious leaders’ statements related to this study’s aims. Interview transcripts were thematically analysed using an inductive, comparative, and cyclical procedure informed by grounded theory. Results: Thirty-five religious leaders (26 male; mean 58.6-years-old), from eight Christian and six non-Christian (Jewish, Buddhist, Islamic, Hindu, Sikh, Bahá’í) backgrounds were included. Three themes emerged which focussed on: religious leaders’ ACP understanding and experiences; explanations for religious followers’ approaches towards end-of-life care; and health professionals’ need to enquire about how religion matters. Most leaders had some understanding of ACP and, once fully comprehended, most held ACP in positive regard. Religious followers’ preferences for end-of-life care reflected family and geographical origins, cultural traditions, personal attitudes, and religiosity and faith interpretations. Implications for healthcare included the importance of avoiding generalisations and openness to individualised and/ or standardised religious expressions of one’s religion. Conclusions: Knowledge of religious beliefs and values around death and dying could be useful in preparing health professionals for ACP with patients from different religions but equally important is avoidance of assumptions. Community-based initiatives, programs and faith settin

    A Tatuagem e a Amazônia: uma reflexão sobre os símbolos amazônicos, comunicação e a pintura corporal

    Get PDF
    The present study has objective to analyze the valorisation and use of Amazonian symbols tattoo on the skin of people. Because they seek for; in what number and there is this search, and as seen by professionals working in Manaus market this practice in the city of Manaus

    Low-pT Collective Flow Induces High-pT Jet Quenching

    Full text link
    Data on low-pT hadronic spectra are widely regarded as evidence of a hydrodynamic expansion in nucleus-nucleus collisions. In this interpretation, different hadron species emerge from a common medium that has built up a strong collective velocity field. Here, we show that the existence of a collective flow field implies characteristic modifications of high-pT parton fragmentation. We generalize the formalism of parton energy loss to the case of flow-induced, oriented momentum transfer. We also discuss how to embed this calculation in hydrodynamic simulations. Flow effects are found to result generically in characteristic asymmetries in the eta-phi-plane of jet energy distributions and of multiplicity distributions associated to high-pT trigger particles. But collective flow also contributes to the medium-induced suppression of single inclusive high-pT hadron spectra. In particular, we find that low-pT elliptic flow can induce a sizeable additional contribution to the high-pT azimuthal asymmetry by selective elimination of those hard partons which propagate with significant inclination against the flow field. This reduces at least partially the recently observed problem that models of parton energy loss tend to underpredict the large azimuthal asymmetry v2 of high-pT hadronic spectra in semi-peripheral Au+Au collisions.Comment: 26 pages LaTeX, 11 eps-figure

    Nuclear parton distributions in the DGLAP approach

    Get PDF
    Determination of the nuclear parton distributions within the framework of perturbative QCD, the DGLAP equations in particular, is discussed. Scale and flavour dependent nuclear effects in the parton distributions are compared with the scale and flavour independent parametrizations of HIJING and of the Hard Probe Collaboration. A comparison with the data from deep inelastic lepton-nucleus scattering and the Drell-Yan process in proton-nucleus collisions is shown.Comment: 19 pages, 6 eps-figures, to appear in the Proceedings of the Hard Probe Collaboratio

    Generating Higher-Order Lie Algebras by Expanding Maurer Cartan Forms

    Full text link
    By means of a generalization of the Maurer-Cartan expansion method we construct a procedure to obtain expanded higher-order Lie algebras. The expanded higher order Maurer-Cartan equations for the case G=V0⊕V1\mathcal{G}=V_{0}\oplus V_{1} are found. A dual formulation for the S-expansion multialgebra procedure is also considered. The expanded higher order Maurer Cartan equations are recovered from S-expansion formalism by choosing a special semigroup. This dual method could be useful in finding a generalization to the case of a generalized free differential algebra, which may be relevant for physical applications in, e.g., higher-spin gauge theories

    Coalescing binary systems of compact objects: Dynamics of angular momenta

    Get PDF
    The end state of a coalescing binary of compact objects depends strongly on the final total mass M and angular momentum J. Since gravitational radiation emission causes a slow evolution of the binary system through quasi-circular orbits down to the innermost stable one, in this paper we examine the corresponding behavior of the ratio J/M^2 which must be less than 1(G/c) or about 0.7(G/c) for the formation of a black hole or a neutron star respectively. The results show cases for which, at the end of the inspiral phase, the conditions for black hole or neutron star formation are not satisfied. The inclusion of spin effects leads us to a study of precession equations valid also for the calculation of gravitational waveforms.Comment: 22 pages, AASTeX and 13 figures in PostScrip
    • …
    corecore