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Chern–Simons models for gravity are interesting because they provide a truly gauge-invariant action
principle in the fiber-bundle sense. So far, their main drawback has largely been its perceived remoteness
from standard General Relativity, based on the presence of higher powers of the curvature in the
Lagrangian (except, remarkably, for three-dimensional spacetime). Here we report on a simple model
that suggests a mechanism by which standard General Relativity in five-dimensional spacetime may
indeed emerge at a special critical point in the space of couplings, where additional degrees of freedom
and corresponding “anomalous” Gauss–Bonnet constraints drop out from the Chern–Simons action. To
achieve this goal, both the Lie algebra g and the symmetric g-invariant tensor that define the Chern–
Simons Lagrangian are constructed by means of the Lie algebra S-expansion method with a suitable
finite Abelian semigroup S . The results are generalized to arbitrary odd dimensions, and the possible
extension to the case of eleven-dimensional supergravity is briefly discussed.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Three of the four fundamental forces of nature are consis-
tently described by Yang–Mills (YM) quantum theories. Gravity,
the fourth fundamental interaction, resists quantization in spite of
General Relativity (GR) and YM theories having a similar geometri-
cal foundation. There exists, however, a very important difference
between YM theory and GR (for a thorough discussion, see, e.g.,
Ref. [1]).

YM theories rely heavily on the existence of the “stage”—the
fixed, non-dynamical, background metric structure with which the
spacetime manifold M is assumed to be endowed.

In GR the spacetime is a dynamical object which has indepen-
dent degrees of freedom, and is governed by dynamical equations,
namely the Einstein field equations. This means that in GR the ge-
ometry is dynamically determined. Therefore, the construction of a
gauge theory of gravity requires an action that does not consider
a fixed spacetime background. An action for gravity fulfilling these
conditions, albeit only in odd-dimensional spacetime, d = 2n + 1,
was proposed long ago by Chamseddine [2,3]. In the first-order
formalism, where the independent fields are the vielbein ea and
the spin connection ωab , the Lagrangian can be written as1
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L(2n+1)
G = κεa1···a2n+1

n∑
k=0

ck

�2(n−k)+1
Ra1a2 · · · Ra2k−1a2k

× ea2k+1 · · · ea2n+1 , (1)

where κ and ck are dimensionless constants2 and � is a length
parameter. As it stands, the Lagrangian (1) is invariant under the
local Lorentz transformations

δea = λa
beb, (2)

δωab = −Dωλab, (3)

where λab = −λba are the real, local, infinitesimal parameters that
define the transformation and Dω stands for the Lorentz covariant
derivative. When the ck constants are chosen as

ck = 1

2(n − k) + 1

(
n

k

)
, (4)

then the Lagrangian (1) can be regarded as the Chern–Simons (CS)
form for the anti-de Sitter (AdS) algebra, and its invariance is ac-
cordingly enlarged to include AdS ‘boosts’. Chern–Simons gravities
have been extensively studied; see, for instance, Refs. [2–15].

If Chern–Simons theories are to provide the appropriate gauge-
theory framework for the gravitational interaction, then these the-
ories must satisfy the correspondence principle, namely they must
be related to GR.

2 In natural units, where c = h̄ = 1.
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An interesting research in this direction has recently been car-
ried out [16,17]. In these references it was found that the modifi-
cation of the CS theory for AdS gravity according to the expansion
method of Ref. [18] is not sufficient to produce a direct link with
GR. In fact, it was shown that, although the action reduces to
Einstein–Hilbert (EH) when the matter fields are switched off, the
field equations do not. Indeed, the corresponding field equations
impose severe restrictions on the geometry, which are so strong as
to rule out, for instance, the five-dimensional Schwarzschild solu-
tion.

It is the purpose of this Letter to show that standard, five-
dimensional General Relativity (without a cosmological constant)
can be embedded in a Chern–Simons gravity theory for a cer-
tain Lie algebra B. The Chern–Simons Lagrangian is built from a
B-valued, one-form gauge connection A (17) which depends on
a scale parameter �—a coupling constant that characterizes differ-
ent regimes within the theory. The B algebra, on the other hand,
is constructed from the AdS algebra and a particular semigroup S
by means of the S-expansion procedure introduced in Refs. [19,
20]. The field content induced by B includes the vielbein ea , the
spin connection ωab and two extra bosonic fields ha and kab . The
full Chern–Simons field equations impose severe restrictions on the
geometry [16,17], which at a special critical point in the space of
coupling (l = 0) disappear to yield pure General Relativity.

This Letter is organized as follows: In Section 2 we briefly
review Chern–Simons AdS gravity. An explicit action for five-
dimensional gravity is considered in Section 3 where the Lie alge-
bra S-expansion procedure is used to obtain a B-invariant Chern–
Simons action that includes the coupling constant (�). It is then
shown that the Einstein gravity theory arises in the strict limit
where the scale parameter l equals to zero. Section 4 concludes
the work with a comment about possible developments.

2. Chern–Simons AdS gravity

A Chern–Simons AdS Lagrangian for gravity in d = 2n + 1 di-
mensions is given by [2,3]

L(2n+1)

AdS = κεa1···a2n+1

n∑
k=0

1

l2(n−k)+1
ck Ra1a2 · · · Ra2k−1a2k

× ea2k+1 · · · ea2n+1 (5)

where the constants ck are given by

ck := 1

2(n − k) + 1

(
n

k

)
, (6)

ea corresponds to the 1-form vielbein, and Rab = dωab + ωa
cω

cb to
the Riemann curvature in the first order formalism.

The Lagrangian (5) is off-shell invariant under the AdS-Lie al-
gebra SO(2n,2), whose generators J̃ ab of Lorentz transformations
and P̃ a of AdS boosts satisfy the commutation relationships

[ J̃ ab, J̃ cd] = ηcb J̃ ad − ηca J̃ bd + ηdb J̃ ca − ηda J̃ cb, (7)

[ J̃ ab, P̃ c] = ηcb P̃ a − ηca P̃ b, (8)

[ P̃ a, P̃ b] = J̃ ab. (9)

The Levi-Civita symbol εa1···a2n+1 in (5) should be regarded as
the only non-vanishing component of the symmetric, SO(2n,2), in-
variant tensor of rank r = n + 1, namely

〈 J̃ a1a2
· · · J̃ a2n−1a2n

P̃ a2n+1〉 = 2n

n + 1
εa1···a2n+1 . (10)

In order to interpret the gauge field associated with a trans-
lational generator P̃ a as the vielbein, one is forced to introduce
a length scale l in the theory. To see why this happens, consider
the following argument: Given that (i) the exterior derivative op-
erator d = dxμ ∂μ is dimensionless, and (ii) one always chooses
Lie algebra generators T A to be dimensionless as well, the one-
form connection fields A = A A

AμT A dxμ must also be dimension-
less. However, the vielbein ea = ea

μ dxμ must have dimensions of
length if it is to be related to the spacetime metric gμν through
the usual equation gμν = ea

μeb
νηab . This means that the “true”

gauge field must be of the form ea/l, with l a length parameter.
Therefore, following Refs. [2,3], the one-form gauge field A of

the Chern–Simons theory is given in this case by

A = 1

l
ea P̃ a + 1

2
ωab J̃ ab. (11)

It is important to notice that once the length scale l is brought
into the Chern–Simons theory, the Lagrangian splits into several
sectors, each one of them proportional to a different power of l, as
we can see directly in Eq. (5).

Chern–Simons gravity is a well defined gauge theory, but the
presence of higher powers of the curvature makes its dynamics
very remote from that for standard Einstein–Hilbert (EH) gravity.
In fact, it seems very difficult to recover Einstein–Hilbert dynamics
from a pure gauge, off–shell invariant theory in odd [21] dimen-
sions (see for example, Refs. [16,17]).

3. Einstein–Hilbert action from five-dimensional Chern–Simons
gravity

In this section we show how to recover the five-dimensional
General Relativity from Chern–Simons gravity. The generalization
to an arbitrary odd dimension is given in Appendix A.

3.1. S-expansion procedure

The Lagrangian for five-dimensional Chern–Simons AdS gravity
can be written as

L(5)

AdS = κ

(
1

5l5
εa1···a5 ea1 · · · ea5 + 2

3l3
εa1···a5 Ra1a2 ea3 · · · ea5

+ 1

l
εa1···a5 Ra1a2 Ra3a4 ea5

)
. (12)

From this Lagrangian it is apparent that neither the l → ∞ nor the
l → 0 limit yields the Einstein–Hilbert term εa1···a5 Ra1a2 ea3 · · · ea5

alone. Rescaling κ properly, those limits will lead either to the
Gauss–Bonnet term (Poincaré Chern–Simons gravity) or to the cos-
mological constant term by itself, respectively.

The Lagrangian (12) is arrived at as the Chern–Simons form for
the AdS algebra in five dimensions. This algebra choice is crucial,
since it permits the interpretation of the gauge fields ea and ωab as
the fünfbein and the spin connection, respectively. It is, however,
not the only possible choice: as we explicitly show below, there
exist other Lie algebras that also allow for a similar identification
and lead to a CS Lagrangian that touches upon EH in a certain
limit.

Following the definitions of Ref. [19], let us consider the S-ex-
pansion of the Lie algebra SO(4,2) using as semigroup S(3)

E . After
extracting a resonant subalgebra and performing its 0S -reduction,
one finds a new Lie algebra, call it B, with the desired prop-
erties. In simpler terms, consider the Lie algebra generated by
{ J ab, P a, Zab, Za}, where these new generators can be written as

J ab = λ0 ⊗ J̃ ab,

Zab = λ2 ⊗ J̃ ab,
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P a = λ1 ⊗ P̃ a,

Za = λ3 ⊗ P̃ a. (13)

Here J̃ ab and P̃ a correspond to the original generators of
SO(4,2), and the λα belong to a discrete, Abelian semigroup. The
semigroup elements {λ0, λ1, λ2, λ3, λ4} are not real numbers and
they are dimensionless. In this particular case, they obey the multi-
plication law given by

λαλβ =
{

λα+β, when α + β � 4,

λ4, when α + β > 4.
(14)

A representation for the λα is provided by the matrices

λ0 =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ , λ1 =

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ ,

λ2 =
⎛
⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎠ , λ3 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠ ,

λ4 =
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ . (15)

Using Theorem VII.2 of Ref. [19], it is possible to show that the
only non-vanishing components of a invariant tensor for the B

algebra are given by

〈 J a1a2
J a3a4

P a5〉 = α1
4l3

3
εa1···a5 ,

〈 J a1a2
J a3a4

Za5〉 = α3
4l3

3
εa1···a5 ,

〈 J a1a2
Za3a4 P a5〉 = α3

4l3

3
εa1···a5 , (16)

where α1 and α3 are arbitrary independent constants of dimen-
sions [length]−3.

In order to write down a Chern–Simons Lagrangian for the B

algebra, we start from the one-form gauge connection

A = 1

2
ωab J ab + 1

l
ea P a + 1

2
kab Zab + 1

l
ha Za, (17)

and the two-form curvature

F = 1

2
Rab J ab + 1

l
T a P a + 1

2

(
Dωkab + 1

l2
eaeb

)
Zab

+ 1

l

(
Dωha + ka

beb)Za. (18)

Consistency with the dual procedure of S-expansion in terms
of the Maurer–Cartan forms [20] demands that ha inherits units of
length from the fünfbein; that is why it is necessary to introduce
the l parameter again, this time associated with ha .

It is interesting to observe that J ab are still Lorentz generators,
but P a are no longer AdS boosts; in fact, [P a, P b] = Zab . However,
ea still transforms as a vector under Lorentz transformations, as it
must be in order to recover gravity in this scheme.

3.2. The Lagrangian

Using the extended Cartan’s homotopy formula as in Ref. [21],
and integrating by parts, it is possible to write down the Chern–
Simons Lagrangian in five dimensions for the B algebra as
L(5)
CS = α1l2εabcde Rab Rcdee

+ α3εabcde

(
2

3
Rabecedee + 2l2kab Rcd T e + l2 Rab Rcdhe

)
.

(19)

Here it is necessary to notice two important points:

(a) The Lagrangian is split into two independent pieces, one
proportional to α1 and the other to α3. The piece propor-
tional to α1 corresponds to the Inönü–Wigner contraction of
the Lagrangian of Eq. (12), and therefore it is the Chern–
Simons Lagrangian for the Poincaré–Lie algebra ISO(4,1). The
piece proportional to α3 contains the Einstein–Hilbert term
εabcde Rabecedee plus non-linear couplings between the curva-
ture and the bosonic “matter” fields kab and ha , where the
parameter l2 can be interpreted as a kind of coupling constant.

(b) When the constant α1 vanishes, the Lagrangian (19) almost
exactly matches the one given in Ref. [16], the only difference
being that in our case the coupling constant l2 appears explic-
itly in the last two terms. This difference has its origin in the
fact that, in Ref. [16], the symmetry and the Lagrangian arise
through the process of Lie algebra expansion (see Ref. [18])
using λ = 1/l as an expansion parameter. In contrast, no pa-
rameter has been used here to create the new B-symmetry
and the Lagrangian. Instead, they were constructed through
the S-expansions procedure, using the dimensionless elements
of a discrete Abelian semigroup (which in general cannot be rep-
resented by real numbers, but rather by matrices).

The presence or absence of the coupling constant l in the La-
grangian could seem like a minor or trivial matter, but it is not. As
the authors of Ref. [16] clearly state, the presence of the Einstein–
Hilbert term in this kind of action does not guarantee that the
dynamics will be that of general relativity. In general, extra con-
straints on the geometry do appear, even around a “vacuum” so-
lution with kab = ha = 0. In fact, the variation of the Lagrangian,
modulo boundary terms, can be written as

δL(5)
CS = εabcde

(
2α3 Rabeced + α1l2 Rab Rcd + 2α3l2Dωkab Rcd)δee

+ α3l2εabcde Rab Rcdδhe

+ 2εabcdeδω
ab(α1l2 Rcd T e + α3l2Dkcd T e + α3eced T e

+ α3l2 RcdDhe + α3l2 Rcdke
f e f )

+ 2α3l2εabcdeδkab Rcd T e. (20)

Therefore, when the condition α1 = 0 is chosen, the torsionless
condition imposed, and a solution without matter (kab = ha = 0) is
picked out, we are left with

δL(5)
CS = 2α3εabcde Rabecedδee + α3l2εabcde Rab Rcdδhe. (21)

In this way, besides general relativity equations of motions
εabcde Rabeced = 0, the equations of motion of pure Gauss–Bonnet
theory εabcde Rab Rcd = 0 do also appear as an anomalous constraint
on the geometry.

It is at this point where the presence of the l parameter makes
the difference. In the present approach, it plays the role of a cou-
pling constant between geometry and “matter”. Remarkably, in the
strict limit where the coupling constant l equals to zero we obtain
solely the Einstein–Hilbert term in the Lagrangian:

L(5)
CS = 2

α3εabcde Rabecedee. (22)

3
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In the same way, in the limit where l → 0 the extra constraints
just vanish, and δL(5)

CS = 0 lead us to just the Einstein–Hilbert dy-
namics in the vacuum,

δL(5)
CS = 2α3εabcde Rabecedδee + 2α3εabcdeδω

abeced T e. (23)

It is interesting to observe that the argument given here is not
just a five-dimensional accident. In every odd dimension, it is pos-
sible to perform the S-expansion in the way sketched here, take
the vanishing coupling constant limit l = 0 and recover Einstein–
Hilbert gravity. (See Appendix A.)

4. Comments and possible developments

The present work shows the difference between the possibili-
ties of the S-expansion procedure [19,21] (using semigroups) and
the Maurer–Cartan forms expansion (using a parameter).

The S-expansion procedure allows us to study in a more deeper
way the role of the l parameter. In fact, it makes possible to
recover odd-dimensional Einstein gravity theory from a Chern–
Simons theory in the strict limit where the coupling constant l
equals to zero while keeping the effective Newton’s constant fixed.
It is only at this point (l = 0) in the space of couplings that the
“anomalous” Gauss–Bonnet constraint disappear from the on-shell
system.

This is in strong contrast with the standard Chern–Simons AdS
gravity [2,3] or the result of expansion using a real parameter [16,
17].

The system of extra constraints on the geometry arises for any
finite value of the scale parameter (coupling constant l �= 0). In
other words, for l �= 0 the system has to obey Einstein’s equations
plus a set of on-shell Gauss–Bonnet constraints. In this way, gen-
eral relativity corresponds to a special critical point, l = 0, in the
space of couplings of the Chern–Simons theory.

The simple model and procedure considered here could play
an important role in the context of supergravity in higher di-
mensions. In fact, it seems likely that it is possible to recover
the standard eleven-dimensional CJS Supergravity from a Chern–
Simons/Transgression form principle, in a way very similar to the
one shown here. In this way, the procedure sketched here could
provide us with valuable information of what the underlying geo-
metric structure of Supergravity in d = 11 and M-theory could be
(work in progress).
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Appendix A. Extension to higher odd dimensions

The Chern–Simons AdS Lagrangian for gravity in d = 2n + 1 di-
mensions is given by

L(2n+1)

AdS = κεa1···a2n+1

n∑
k=0

ck

�2(n−k)+1
Ra1a2 · · · Ra2k−1a2k

× ea2k+1 · · · ea2n+1 (24)

where the ck constants are defined as

ck = 1

2(n − k) + 1

(
n

k

)
, (25)

ea corresponds to the one-form vielbein, and Rab = dωab +ωa
cω

cb

to the Riemann curvature in the first-order formalism.
Simple inspection of (24) shows that neither the � → ∞ nor

the � → 0 limits produce Einstein–Hilbert gravity.
Let us instead consider the S-expansion [19] of the AdS algebra

so(2n,2) through the Abelian semigroup S = {λα} defined by the
product

λαλβ =
{

λα+β, when α + β � 2n,

λ2n, when α + β > 2n.
(26)

The λα elements are dimensionless, and can be represented
by the set of 2n × 2n sparse matrices [λα]i

j = δi
j+α , where i, j =

1, . . . ,2n − 1, α = 0, . . . ,2n, and δ stands for the Kronecker delta.
The generators of the new Lie algebra B2n+1 obtained through

S-expansion, resonant subalgebra extraction and 0S -reduction [19]
can be thought of as the direct products

J (ab,2k) = λ2k ⊗ J̃ab, (27)

P (a,2k+1) = λ2k+1 ⊗ P̃ a, (28)

with k = 0, . . . ,n − 1. According to Theorem VII.2 from Ref. [19],
the symmetric invariant tensor of order n + 1 for this case can be
chosen to be

〈 J (a1a2,i1) · · · J(a2n−1a2n,in) P (a2n+1,in+1)〉

= 2n�2n−1

n + 1
α jδ

j
i1+···+in+1

εa1···a2n+1 , (29)

where ip, j = 0, . . . ,2n − 1, the αi are arbitrary constants, and all
other components vanish.

The B2n+1-valued, one-form gauge connection A takes the
form

A =
n−1∑
k=0

[
1

2
ω(ab,2k) J (ab,2k) + 1

�
e(a,2k+1) P (a,2k+1)

]
. (30)

Using the matrix representation given above for the semigroup
elements, it is possible to show that the two-form curvature F =
dA + A2 is given by

F =
n−1∑
k=0

[
1

2
F (ab,2k) J (ab,2k) + 1

�
F (a,2k+1) P (a,2k+1)

]
, (31)

where

F (ab,2k) = dω(ab,2k) + ηcdω
(ac,2i)ω(db,2 j)δk

i+ j

+ 1

�2
e(a,2i+1)e(b,2 j+1)δk

i+ j+1, (32)

F (a,2k+1) = de(a,2k+1) + ηbcω
(ab,2i)e(c,2 j)δk . (33)
i+ j
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Following the method presented in Ref. [21], it is possible to
write down the CS B2n+1 Lagrangian explicitly as

L(2n+1)
CS =

n∑
k=1

�2k−2ckα jδ
j
i1+···+in+1

δ
ik+1
p1+q1

· · · δin
pn−k+qn−k

εa1···a2n+1

× F (a1a2,i1) · · · F (a2k−1a2k,ik)e(a2k+1,p1)e(a2k+2,q1) · · ·
× e(a2n−1,pn−k)e(a2n,qn−k)e(a2n+1,in+1). (34)

In the � → 0 limit, the only surviving term in (34) is given by
k = 1:

L(2n+1)
CS

∣∣
�→0 = c1α jδ

j
i+k1···+k2n−1

εa1···a2n+1

× F (a1a2,i)e(a3,k1) · · · e(a2n+1,k2n−1), (35)

= c1α jδ
j
2p+2q1+1+···+2q2n−1 +1εa1···a2n+1

× F (a1a2,2p)e(a3,2q1+1) · · · e(a2n+1,2q2n−1 +1)
, (36)

= c1α jδ
j
2(p+q1+···+q2n−1)+2n−1εa1···a2n+1

× F (a1a2,2p)e(a3,2q1+1) · · · e(a2n+1,2q2n−1 +1)
. (37)

The only non-vanishing component of this expression occurs for
p = q1 = · · · = q2n−1 = 0 and is proportional to the EH Lagrangian,

L(2n+1)
CS

∣∣
�→0 = c1α2n−1εa1···a2n+1 F (a1a2,0)e(a3,1) · · · e(a2n+1,1), (38)

= nα2n−1

2n − 1
εa1···a2n+1 Ra1a2 ea3 · · · ea2n+1 . (39)
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