70 research outputs found

    Stitching Dynamic Movement Primitives and Image-based Visual Servo Control

    Full text link
    Utilizing perception for feedback control in combination with Dynamic Movement Primitive (DMP)-based motion generation for a robot's end-effector control is a useful solution for many robotic manufacturing tasks. For instance, while performing an insertion task when the hole or the recipient part is not visible in the eye-in-hand camera, a learning-based movement primitive method can be used to generate the end-effector path. Once the recipient part is in the field of view (FOV), Image-based Visual Servo (IBVS) can be used to control the motion of the robot. Inspired by such applications, this paper presents a generalized control scheme that switches between motion generation using DMPs and IBVS control. To facilitate the design, a common state space representation for the DMP and the IBVS systems is first established. Stability analysis of the switched system using multiple Lyapunov functions shows that the state trajectories converge to a bound asymptotically. The developed method is validated by two real world experiments using the eye-in-hand configuration on a Baxter research robot.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Effects of CPP-ACP and Remin-Pro on Surface Roughness of Bleached Enamel: an Atomic Force Microscopy Study

    Get PDF
    Objectives Bleaching agents can change the organic and mineral contents of the tooth structure. The aim of this study was to evaluate the effects of two remineralizing agents on surface roughness of bleached enamel. Methods In this experimental study, 24 premolars were collected. The testing area was a window measuring 3 × 4 mm. First the surface roughness of specimens was measured by atomic force microscopy (AFM). Then, the teeth were bleached. Surface roughness was measured again. Specimens were randomly divided into 3 groups. No remineralizing agent was applied in the control group (A). Casein phosphopeptide amorphous calcium phosphate (CPP-ACP) and Remin-Pro were used in groups B and C, respectively. After 15 days, the surface roughness was measured. The changes in surface roughness were analyzed by paired t-test, and comparison between the groups was done by the Welch and Games-Howell post hoc tests. Results The surface roughness increased after bleaching (P<0.000). Surface roughness in groups B (P=0.03) and C (P=0.04) was significantly lower than that in group A. There was no significant difference in the level of surface roughness reduction between groups B and C. The Welch test revealed that the mean change in surface roughness values after remineralization in groups B and C was significantly higher than that in group A (P=0.001 and P=0.002, respectively). The difference between groups B and C was not significant (P=0.97). Conclusion CPP-ACP and Remin-Pro reduce the surface roughness of bleached enamel more effectively than the saliva

    Effects of Brace Configuration and Structure Height on Seismic Performance of BRBFs Based on the Collapse Fragility Analysis

    Get PDF
    The brace configuration and structure height are two factors that have a significant effect on the seismic behavior of braced frame buildings. In the present study, the buckling-restrained braced (BRB) frames were considered to estimate the effect of these two parameters using probabilistic seismic assessment methods. The uncertainty in the different parameters involved in the seismic design of the structural system was also considered. Four, six, and ten-story buildings with the Chevron and inverted Chevron bracing configurations were designed, and their responses due to various ground motions were estimated using incremental nonlinear dynamic analyses. Fragility curves, mean annual frequency of exceeding immediate occupancy (IO), and collapse prevention (CP) states were generated using probabilistic seismic analysis, fragility curves concept, and drift hazard curves. The results demonstrate that the inverted Chevron type BRBFs has better structural performance than Chevron bracing types. Furthermore, an increase of the height of structures, despite lower drift’s hazards, increases the fragility probability

    presentation of multi skill workforce scheduling model and solving the model using meta heuristic algorithms

    Get PDF
    In the present article, a multi-objective mathematical model for scheduling multi-skilled multi-objective workforce has been proposed with the aims of minimizing the number of night-shift engineers, minimizing the total cost of workforce and maximizing the number of engaged workforce. To solve the proposed model for scheduling workforce, bee colony optimization algorithm and DE algorithm have been employed, and in order to investigate the efficiency of these two algorithms, the results have been compared with each other in terms of quality, dispersion and uniformity factors. In order to solve the model three sample problems (40, 70 and 280 workforce) were designed and then solved by the two mentioned algorithms. Bee algorithm is able to find higher-quality answers. Also the results of the comparison of dispersion and uniformity index indicate that bee colony algorithm is able to find answers with more dispersion and more homogeneous than DE algorithm. The comparison of solution time of both algorithms indicate that bee colony algorithm is faster than DE algorithm and needs less time to reach quality, dispersed and homogenous answers.</span

    Safe Adaptive Trajectory Tracking Control of Robot for Human-Robot Interaction Using Barrier Function Transformation

    Get PDF
    In this chapter, safety methods in human-robot (HR) interaction/collaboration are presented. Ensuring the safety of humans, objects, or even the robot itself in the robot’s operating environment is one of the crucial aspects of collaborative robotics. Since there are limited ways of controlling the behavior of humans, e.g., by placing physical barriers, shaping the behavior of the robot is a feasible option. The chapter discusses current methods of placing barriers for human safety in an industrial setting and novel methods of placing virtual barriers by designing robot controllers using barrier transformation. The concepts of barrier functions (BFs), control barrier functions (CBFs), and barrier transformations are reviewed. The barrier transformation concept is used to design an adaptive trajectory tracking controller for the robot such that the robot does not cross the virtual barriers. The designed controller is tested in simulations. Future directions of safety technology in human-robot collaboration are presented

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%.Peer ReviewedPostprint (published version

    Nanotechnology in peripheral nerve repair and reconstruction

    Get PDF
    The recent progress in biomaterials science and development of tubular conduits (TCs) still fails in solving the current challenges in the treatment of peripheral nerve injuries (PNIs), in particular when disease-related and long-gap defects need to be addressed. Nanotechnology-based therapies that seemed unreachable in the past are now being considered for the repair and reconstruction of PNIs, having the power to deliver bioactive molecules in a controlled manner, to tune cellular behavior, and ultimately guide tissue regeneration in an effective manner. It also offers opportunities in the imaging field, with a degree of precision never achieved before, which is useful for diagnosis, surgery and in the patientâ s follow-up. Nanotechnology approaches applied in PNI regeneration and theranostics, emphasizing the ones that are moving from the lab bench to the clinics, are herein overviewed.The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for the financial support provided to Joaquim M. Oliveira (IF/01285/2015) and Joana Silva-Correia (IF/00115/2015) under the program “Investigador FCT”.info:eu-repo/semantics/publishedVersio
    corecore