62 research outputs found

    Expression of SCCmec cassette chromosome recombinases in methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis

    Get PDF
    Objectives Methicillin resistance in staphylococci is mediated by the mecA gene, which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is responsible for vertical and horizontal transfer of methicillin resistance. Horizontal transfer implies first SCCmec excision from the chromosome. Site-specific excision is catalysed by the Ccr recombinases, which are encoded by ccrAB genes located on the cassette. The aim of this study is to determine the promoter activity of ccrAB genes in individual cells of methicillin-resistant Staphylococcus aureus (N315, COL and MW2) and Staphylococcus epidermidis (RP62A). One mutant cured of its SCCmec (N315EX) was also used. Exposure to various stresses was included in the study. Methods For each strain, translational promoter-green fluorescent protein (gfp) fusions were used to assess the levels of ccr promoter activity in individual cells. Analyses were performed using epifluorescence microscopy and flow cytometry. Results ccr promoter activity was observed in only a small percentage of cell populations. This ‘bistable' phenotype was strain dependent (GFP was expressed in N315 and RP62A, but not in COL and MW2) and growth dependent (GFP-expressing cells decreased from approximately 3% to 1% between logarithmic and stationary growth phases). The ccr promoter of strain N315 displayed normal promoter activity when expressed in SCCmec-negative N315EX. Likewise, the ccr promoter of strain COL (which was inactive in COL) showed normal N315-like activity when transformed into N315 and N315EX. Conclusions SCCmec excision operates through bistability, favouring a small fraction of cells to ‘sacrifice' their genomic islands for transfer, while the rest of the population remains intact. Determinants responsible for the activity of the ccr promoter were not located on SCCmec, but were elsewhere on the genome. Thus, the staphylococcal chromosome plays a key role in determining SCCmec stability and transferabilit

    Excision of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus assessed by quantitative PCR.

    Get PDF
    BACKGROUND: Methicillin-resistance in staphylococci is conferred by the mecA gene, located on the genomic island Staphylococcal Cassette Chromosome mec (SCCmec). SCCmec mobility relies on the Ccr recombinases, which catalyze insertion and excision form the host's chromosome. Although being a crucial step in its horizontal transfer, little is known about the dynamics of SCCmec excision. RESULTS: A quantitative PCR-based method was used to measure the rate of SCCmec excision by amplifying the chromosome-chromosome junction and the circularized SCCmec resulting from excision. SCCmec excision rate was measured in methicillin-resistant Staphylococcus aureus (MRSA) strain N315 at various growth times in broth cultures. In the present experimental settings, excision of SCCmec occurred at a rate of approximately 2 × 10(-6) in MRSA N315. CONCLUSION: This work brings new insights in the poorly understood SCCmec excision process. The results presented herein suggest a model in which excision occurs during a limited period of time at the early stages of growth

    Considerations for the design and conduct of human gut microbiota intervention studies relating to foods

    Get PDF
    With the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological advances have improved our understanding and ability to measure this indigenous population and the impact of such interventions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiota–host interactions and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of human gut microbiota interventional studies relating to foods

    Evolutionary Analyses of Staphylococcus aureus Identify Genetic Relationships between Nasal Carriage and Clinical Isolates

    Get PDF
    Nasal carriage of Staphylococcus aureus has long been hypothesized to be a major vector for the transmission of virulent strains throughout the community. To address this hypothesis, we have analyzed the relatedness between a cohort of nasal carriage strains and clinical isolates to understand better the genetic conformity therein. To assess the relatedness between nasal carriage and clinical isolates of S. aureus, a genetic association study was conducted using multilocus sequence typing (MLST) and typing of the hypervariable regions of clumping factor and fibronectin binding protein genes. At all loci analyzed, genetic associations between both nasal carriage and clinical isolates were observed. Computational analyses of MLST data indicate that nasal carriage and clinical isolates belong to the same genetic clusters (clades), despite differences in sequence type assignments. Genetic analyses of the hypervariable regions from the clumping factor and fibronectin binding protein genes revealed that not only do clinically relevant strains belong to identical genetic lineages as the nasal carriage isolates within our cohort, but they also exhibit 100% sequence similarity within these regions. The findings of this report indicate that strains of S. aureus being carried asymptomatically throughout the community via nasal colonization are genetically related to those responsible for high levels of morbidity and mortality

    Bacterial Signatures of Paediatric Respiratory Disease : An Individual Participant Data Meta-Analysis

    Get PDF
    Introduction: The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies.Methods: We obtained raw microbiota data from public repositories or via communication with corresponding authors. Cross-sectional analyses of the paediatric (10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses.Results: We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including Streptococcus and Haemophilus. Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively.Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.Peer reviewe

    Demographic responses of Daphnia magna fed transgenic Bt-maize

    Get PDF
    The food/feed quality of a variety of genetically modified (GM) maize expressing Cry1Ab Bt-toxin was tested over the life-cycle of Daphnia magna, an arthropod commonly used as model organism in ecotoxicological studies. Demographic responses were compared between animals fed GM or unmodified (UM) near isogenic maize, with and without the addition of predator smell. Age-specific data on survival and birth rates were integrated and analysed using life tables and Leslie matrices. Survival, fecundity and population growth rate (PGR) data generally disfavoured transgenic Bt-maize as feed for D. magna compared to animals fed the unmodified (UM) near isogenic line of maize. Decomposition of age-specific effects revealed that the most important contributions to a reduced PGR in the GM-fed group came from both fecundity and survival differences early in life. We conclude that juvenile and young adult stages are the most sensitive experimental units and should be prioritized in future research. These stages are often omitted in toxicological/ecotoxicological studies and in feeding trials

    Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK

    Get PDF
    We sought to determine the prevalence of nasal colonisation with methicillin-resistant Staphylococcus aureus among cattle veterinarians in the UK. There was particular interest in examining the frequency of colonisation with MRSA harbouring mecC, as strains with this mecA homologue were originally identified in bovine milk and may represent a zoonotic risk to those in contact with dairy livestock. Three hundred and seven delegates at the British Cattle Veterinarian Association (BCVA) Congress 2011 in Southport, UK were screening for nasal colonisation with MRSA. Isolates were characterised by whole genome sequencing and antimicrobial susceptibility testing. Eight out of three hundred and seven delegates (2.6%) were positive for nasal colonisation with MRSA. All strains were positive for mecA and none possessed mecC. The time since a delegate’s last visit to a farm was significantly shorter in the MRSA-positive group than in MRSA-negative counterparts. BCVA delegates have an increased risk of MRSA colonisation compared to the general population but their frequency of colonisation is lower than that reported from other types of veterinarian conference, and from that seen in human healthcare workers. The results indicate that recent visitation to a farm is a risk factor for MRSA colonisation and that mecC-MRSA are rare among BCVA delegates (<1% based on sample size). Contact with livestock, including dairy cattle, may still be a risk factor for human colonisation with mecC-MRSA but occurs at a rate below the lower limit of detection available in this study

    Rapid detection of Staphylococcus aureus strains with reduced susceptibility to vancomycin by isothermal microcalorimetry.

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) usually harbors a vancomycin-susceptible phenotype (VSSA) but can exhibit reduced vancomycin susceptibility phenotypes that can be heterogeneous-intermediate (hVISA), intermediate (VISA), or fully resistant (VRSA). Current detection techniques (e.g., Etest and population analysis profiles [PAPs]) are slow and time-consuming. We investigated the potential of microcalorimetry to detect reduced susceptibilities to vancomycin in MRSA strains. Representative MSSA, VSSA, hVISA, VISA, and VRSA reference strains, as well as clinical isolates, were used. PAPs were performed by standard methods. Microcalorimetry was performed by inoculating 5 × 10(7) CFU of overnight cultures into 3-ml vials of brain heart infusion broth supplemented with increasing concentrations of vancomycin, and growth-related heat production was measured at 37°C. For the reference strains, no heat production was detected in the VSSA isolates at vancomycin concentrations of &gt;3 μg/ml during the 72 h of incubation. The hVISA and VISA strains showed heat production with concentration-proportional delays of up to 6 μg/ml in 48 h and up to 12 μg/ml in 72 h, respectively. The VRSA strain showed heat production at concentrations up to 16 μg/ml in 12 h. The testing of clinical strains indicated an excellent negative predictive value, allowing us to rule out a decreased vancomycin susceptibility phenotype in &lt;8 h of incubation. Sequential isolates from a patient undergoing vancomycin therapy showed evolving microcalorimetric profiles up to a VISA phenotype. Microcalorimetry was able to detect strains with reduced susceptibilities to vancomycin in &lt;8 h. The measurement of bacterial heat production might represent a simple and rapid method for the detection of reduced susceptibilities to vancomycin in MRSA strains
    corecore