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Abstract
With the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to 
design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological 
advances have improved our understanding and ability to measure this indigenous population and the impact of such interven-
tions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured 
and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider 
population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines 
considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating 
to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human 
host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of 
products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in 
the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiota–host interactions 
and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated 
that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of 
human gut microbiota interventional studies relating to foods.
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SSU rRNA  Small subunit ribosomal RNA
TLR  Toll-like receptors
TMA  Trimethylamine
TMAO  Trimethylamine-N-oxide
TNF-α  Tumor necrosis factor-α

Introduction

It is well established that the gut microbiota is a significant 
variable in defining host health. Aberrant microbial compo-
sitions and/or functions have also been implicated in vari-
ous disease states. As such, there is an increasing drive to 
design and develop novel interventions to modulate this 
intestinal community to promote beneficial microbial–host 
interactions and/or attenuate adverse outcomes. Attempting 
to shape the microbiota to enhance host health is not a novel 
concept. However, advancements in science and technol-
ogy have enabled the multiple components of this expansive 
microbial–host relationship to be studied at high resolution 
[1]. This has significantly advanced our understanding of its 
influence on host health and our ability to evaluate the impact 
of interventions on this pan-organismal system. Different 
strengths and limitations accompany the various methodologi-
cal approaches and caution must be exercised when drawing 
conclusions from study findings and comparing across studies 
and interventions [2]. Another issue is the predominance of 
case–control studies, which by their nature generate correla-
tions but do not provide evidence of biological relatedness. An 
increased focus on intervention studies using diet to mediate 
specific changes within the microbiota or metabolite produc-
tion linked to host physiology is needed to advance the field. 
Given the large inter-individual variation that exists across 
the gut microbiota and the numerous selection pressures on 
these microbes, care must also be taken when selecting target 
populations for intervention studies and when extrapolating 
the relevance of research findings to the wider population [3]. 
This review seeks to provide guidance to facilitate the design, 
implementation and interpretation of human gut microbiota 
intervention studies relating to foods. The focus is exclusively 
on human studies.

Study design

General guidelines focusing on the design, conduct and 
reporting of human intervention studies to evaluate health 
benefits of foods [4] or for the scientific substantiation of 
health claims in relation to foods and food constituents are 
provided elsewhere [5]. Here, we focus on specific elements 
of study design for human gut microbiota studies relating 
to foods.

Research questions should be clearly stated at the outset 
as these will directly influence all critical aspects of the 
study design. Research questions of particular relevance 
include the following:

• What effect does the gut microbiota have on the metabo-
lism and bioavailability of nutrients and non-nutrients 
present in foods?

• What effects do diets, foods or food constituents have on 
gut microbial composition and/or activity?

• What effects do changes in the gut microbiota composi-
tion and/or activity following a dietary intervention have 
on human health or on a biomarker of human health?

Although the above research questions can overlap, they 
help to define the study hypothesis and primary outcome.

One specific challenge for establishing if changes in gut 
microbial composition and/or activity have an effect on 
human health or biomarkers of human health is that effects 
on human health may be parallel but independent of changes 
in the gut microbiota. For example, it has been shown that 
the improvement in vascular function associated with cocoa 
flavanol consumption is predominantly attributable to the 
presence of the monomer epicatechin and not with the more 
abundant procyanidins and gut microbiome–derived cocoa 
flavanol catabolites [6]. Hence, such intervention studies may 
have limitations in determining causality because effects of 
dietary intervention on the gut microbiota and health out-
comes may be unrelated. Nevertheless, these studies can yield 
relevant mechanistic insights, and together with evidence from 
other studies, including animal studies, can help to unravel 
cause–effect relationships between dietary intake and health.

Initial exploratory studies, including single arm studies, 
may be useful to gather information on specific aspects relat-
ing to the intervention. While the findings of such studies are 
unlikely to be publishable, especially single arm studies that 
lack an appropriate control, they do provide information that 
allows for better design of subsequent more rigorous rand-
omized controlled trials (RCTs). For example, exploratory 
studies can help with dose-finding and provide information 
on the variability and size of outcome measures, information 
necessary for sample size calculations [4]. In the context of 
microbiota interventions, an exploratory study could also be 
used to establish if the abundance of a particular taxonomic 
group of interest persists after the end of an intervention and 
if so, for how long. Such persistence could result in significant 
carry-over effects in crossover studies beyond the duration of 
the washout period integrated in the study design, and this 
should be investigated by carry-over analysis of genus abun-
dances profiles [5, 7]. Washout periods should be adjusted 
accordingly.

RCTs share key features such as randomization, blinding, 
homogenization of procedures across the study groups except 
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for the test and control products, intention-to-treat analysis 
and analysis of the magnitude of difference in pre-defined 
endpoints [8]. Double-blind, placebo-controlled RCTs are 
considered as the gold standard and are preferred as the most 
rigorous approach [5, 8]. In general, for RCTs either parallel 
or crossover designs can be considered suitable for human 
gut microbiota studies [7, 9, 10]. Cross-over studies have an 
advantage of using each subject as their own control ensuring 
that there are no inherent differences in microbial composition 
and other parameters between treatment groups at baseline [9, 
10]. As a result, sample sizes can be smaller. This design also 
enables factors contributing to responder/non-responder status 
to be investigated including whether it is specific to a diet or 
a general feature of an individual’s microbiota. This was well 
illustrated in a study by Salonen et al. [11] exploring micro-
bial responses to three fully controlled test diets. Diet-induced 
changes were observed in the microbiota of some individuals 
(responders), while the microbiota remained stable in others 
(non-responders) following a dietary switch [11]. Although 
parallel design studies require larger sample sizes to overcome 
this issue of inter-individual variation in the gut microbiota, 
they benefit from shorter study durations requiring less com-
mitment from study participants [5]. Furthermore, data analy-
sis can be less complex for parallel-arm studies compared to 
those with a cross-over design.

Eligibility criteria, baseline microbiota 
and important confounding variables in gut 
microbiota studies

Eligibility (inclusion/exclusion) criteria are physiological 
or clinical characteristics, or demographic variables used to 
define the study population [12]. Specific attention should 
be given to the following criteria known to impact on the gut 
microbiota.

Age, diet and lifestyle

Certain discrete age ranges should be considered for human 
gut intervention studies (e.g. infants, adults or elderly) as 
known differences in the composition of the gut microbiota 
are present at different ages. The infant gut microbiota is char-
acterized by a degree of instability with diet being one of 
the main drivers shaping the microbiota during infancy (e.g. 
breast-fed vs formula-fed) [13]. Delivery mode (vaginal birth, 
caesarean delivery) and gestational age are also important fac-
tors determining gut microbial composition in early-life [14, 
15]. Another major event that causes dramatic diversification 
of the infant microbiota is weaning, i.e. the introduction of a 
varied solid food diet. There is still no general agreement as to 
when the microbiota becomes fully adult-like. Some authors 
report that this occurs at three years of age [16] while others 

have shown variation in the microbiota persists between ado-
lescents and adults [17]. It has also been shown that the micro-
biota of older individuals (those above the age of 65 years) is 
distinct from younger adults in both composition and function 
[18]. The impact of interventions on microbial–host interac-
tions and their downstream effects on health may, therefore, 
differ between different age groups [19, 20].

The most important restriction with regard to diet in micro-
biota studies is the use of supplements or products that contain 
prebiotics and/or probiotics. Another parameter to consider 
is the habitual composition of the diet, especially the dietary 
fiber intake. Several studies have shown that the amount of 
dietary fiber consumed at baseline influences the responsive-
ness to interventions. In a study by Healey et al. responsive-
ness to insulin supplementation (16 g/days) in healthy subjects 
differed, with regard to changes in the composition of the fecal 
microbiota, based upon their habitual dietary fiber intake (two 
groups, 18 g/days versus 39 g/days) [21]. As such, habitual 
fiber intake should be considered in the design of the human 
studies. Correlations were also observed between the baseline 
level of bifidobacteria and their growth in response to inulin, 
with greater growth seen in those individuals harboring lower 
initial levels. This is consistent with the results from Tap et al. 
where participants with a higher baseline microbial richness 
had gut microbiota that were more resilient to change and, 
therefore, less responsive to changes in dietary fiber intake 
[22]. In addition, many plant foods, such as artichokes and 
soy, contain components with prebiotic properties. The poten-
tial for the habitual diet to modulate the microbiota should be 
considered where possible.

Participants should be instructed not to change their prin-
cipal diet and calorie intake during a gut microbiota interven-
tion study as this may cause microbial changes unrelated to 
the intervention. For example, calorie restriction and other 
weight loss diets have been reported to change the microbiota 
[23, 24]; hence, exclusion of subjects on weight loss programs 
should be considered. The same applies to participants on 
other types of special diets such as vegan or diets with inten-
tion to use certain limited food groups only (e.g. paleo diet, 
gluten-free), although this will be study-specific depending 
upon the research question. Hence, habitual diet should be 
taken into account at least when analyzing the data as a poten-
tial confounder or mediator of the intervention effect [4, 5].

Measurement of food intake combined with food composi-
tion is key to assessing the impact of food on health. However, 
assessing dietary intake is a major research challenge [25]. It 
is important to note that all self-reporting methods have error, 
such as random day to day variability and systematic error or 
bias. Understanding the nature of the error can ensure bet-
ter assessments and interpretation of results. As such, there 
is a longstanding desire to identify biomarkers that provide 
objective measures of dietary intake with minimal error. 
However, to date few exist other than bodyweight, doubly 
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labelled water, 24 h nitrogen, urea, potassium and sodium 
[26] and a selection of metabolic markers indicative of spe-
cific nutritional intake (e.g. urinary proline betaine for citrus 
fruit intake) [27]. Metabolomics, metagenomics and natural 
enrichment of stable isotopes are being increasingly used to 
identify novel biomarkers or methods to assess intake [28, 
29]. Ultimately, the main research question of the study will 
dictate the dietary methods chosen to characterize/ the main 
dietary component(s) of interest and a Best Practice Guideline 
exists that outlines the questions that should be addressed to 
determine the most appropriate dietary tool to use [30].

Recent studies, both in laboratory animals and in humans. 
have suggested gender differences may exist in gut micro-
bial composition [31, 32]. Moreover, microbiota response to 
dietary components has also been suggested to differ between 
men and women [33]. Such variation could contribute to sex 
differences in vascular, metabolic and immune parameters 
apparent in some dietary interventions [34, 35]. However, 
few human dietary interventions have been conducted with 
sufficient statistical power to delineate sex-specific micro-
biota responses. Potential gender effects could have signifi-
cant implications for future dietary interventions, suggesting 
much larger sample sizes may be required to account for dif-
ferent effect sizes in men and women. Similarly, possible sex 
effects could have implications for previous dietary interven-
tions which failed to show positive changes in microbiota or 
related physiological responses, since failure to take sex bias 
into account when calculating sample sizes may have led to 
the statistical underpowering of studies and possible false 
negatives [36].

Exercise level is another lifestyle factor known to impact 
on gut microbial composition [37] and participants plan-
ning on changing their exercise levels or intensity should be 
excluded. Long-distance travel and its associated jet lag have 
also been identified to lead to aberrant microbiota diurnal 
fluctuations [38, 39].

Baseline microbial composition

Health status and drug/medication use are important param-
eters to record to aid interpretation of results. Despite an 
accurate a priori definition of the study population based on 
specific eligibility criteria, significant variation of the micro-
biota across study participants cannot be avoided [40]. In the 
future, inclusion and exclusion criteria may incorporate the 
baseline microbiota profile to ensure that study groups are 
comparable and eventually for optimizing intervention effi-
cacy. This may include, for example, measuring microbiota 
richness or diversity, clustering within specific enterotypes 
or targeting a specific bacterial group if it is expected to be 
involved in the mechanism of action. Multiple measurements 
within the same individual may be necessary to provide an 
accurate understanding of the individual’s microbiota, e.g., 

by including microbiota analysis before and after a 2-week 
run-in period [7]; however, this may not always be practically 
feasible.

Environmental considerations

While it may not be feasible to incorporate truly environmen-
tal factors into the inclusion/exclusion criteria it may be ben-
eficial to record such information to assist the interpretation 
of results.

The microbiota of healthy adults is thought to be rela-
tively stable and resistant to colonization by both pathogens 
and commensal microbes, as confirmed by metagenomic 
analyses showing that ca. 70% of the strain-level signature 
of the adult microbiota is constant in time [41]. In contrast, 
in early life, during age-driven microbiota succession there is 
a high turnover in species [14]. Due to the adaptation of the 
intestinal microbes to gut environment, social-environmental 
conditions, such as crowding, family composition and family 
size are likely to influence the gut microbiota, especially in 
early life. Family members share bacterial strains, implying 
transmission among family members has a strong influence 
on shaping gut microbiota [42]. For example, Sjogren et al. 
showed that the number of family members is positively cor-
related with the number of bifidobacteria species [43]. House-
hold pets can be a particularly rich source of microorgan-
isms, especially for children [44], where it has been reported 
that infants raised in households with dogs harbored more 
Ruminococcus and Oscillospira [45]. Hygiene practices 
within households and the use of anti-microbial products is 
also likely to influence microbial exposure and transmission. 
However, capturing such information in an objective manner 
that can inform participant inclusion/exclusion is likely to be 
difficult.

Sample sizes

Calculating the number of participants required for micro-
biota intervention studies is challenging for several reasons. 
In many cases it is not possible to select beforehand, which 
specific bacterial taxa are expected to be modulated by the 
particular dietary intervention in a given population. Another 
issue is that it is still not possible to define a normal (eubio-
sis) or abnormal microbiota (dysbiosis). Hence, it is difficult 
to interpret an increase or decrease of specific microbiota 
groups as an indication of any specific health effect. Unsur-
prisingly, the extent of changes in microbiome composition 
and structure that could be considered biologically relevant is 
difficult to determine. The current EFSA guidance document 
[46] does not specify any biologically relevant effect sizes 
(after public consultation of the earlier 2011 version [47], the 
suggestion of at least 1 log decrease of detrimental organisms 
was dropped from the final document) [48]. Some inferences 
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regarding relevant effect sizes could possibly be made from 
studies comparing microbiota in subjects with different health 
status. For example, it could be argued that an increase of 
approximately 0.5 units of Shannon diversity index may be 
biologically beneficial, as this is the difference observed 
between obese and lean individuals [49]. Consequently, it is 
more likely that study group size is defined based on other 
measured parameters, such as biochemical and clinical traits.

The outcome measure used to calculate the necessary 
sample size will depend on the hypothesis being tested. If 
measurement of bifidogenesis upon ingestion of a test fiber 
is sufficient to establish selective fermentation in vivo and 
possible prebiotic status, then sample size calculations could 
be performed using effect sizes and standard deviations for 
fecal bifidobacteria measured quantitatively using quantita-
tive polymerase chain reaction (qPCR) or fluorescence in situ 
hybridization (FISH) for example. If, on the other hand, a trial 
is designed to test whether ingestion of a particular probiotic 
strain impacts on blood cholesterol levels, then cholesterol 
lowering should be selected as primary objective and data 
from existing similar studies should be used to design a trial 
with sufficient statistical power to demonstrate a cause and 
effect relationship between ingestion of the test probiotic and 
this recognized health effect.

Characterization of the product/foods

The product evaluated in microbiota intervention studies 
must be well characterized. In addition to the macronutrient 
composition (fat, protein, carbohydrates), focus should be on 
components that possibly act as microbial modulators includ-
ing fibers, certain micronutrients as well as non-nutritive com-
pounds such as certain polyphenols or probiotic cultures. The 
following describes the specific characterization requirements 
of known microbial modulators such as probiotics, prebiotic 
fibers and polyphenols, which can be provided in purified 
form.

Probiotics are defined as live microorganisms that, when 
administered in adequate amounts, confer a health benefit on 
the host [50, 51]. Correct identification and characterization 
of such live microorganisms (e.g. bacteria and yeast) is con-
sidered of critical importance by Regulators in particular if 
endpoints from a probiotic intervention study are provided 
as evidence to support health claim applications. This is 
important as observed physiological effects in the host are 
species- or even strain specific [52]. Strains should be named 
in accordance with the International Code of Nomenclature 
(for bacteria according to the International Committee on 
Systematics of Prokaryotes (https ://icsp.org/), and for fungi 
according to the International Code of Nomenclature by the 
International Commission on the Taxonomy of Fungi (ICTF) 
(www.funga ltaxo nomy.org)) or MycoBank (https ://www.

mycob ank.org). It is recommended to deposit strains in an 
internationally recognized culture collection (https ://www.
wfcc.info/colle ction s/).

Before studying health benefits associated with probiotics 
in vivo, probiotic candidate strains should be characterized 
in vitro. Phenotypic and physiological properties such as car-
bohydrate fermentation, enzymatic activity and in particular, 
ability to survive and grow under conditions similar to those 
in the GI tract should be determined. In addition, safety of the 
probiotic must be demonstrated either by a history of safe use 
and/or specific in vitro and in vivo safety assessment prior to 
use in a human intervention study. Viability and stability con-
siderations are also critical for probiotic interventions. Viable 
cell count and stability of count for the duration of the human 
intervention study under defined storage conditions and in the 
corresponding matrix/delivery format should be monitored 
and documented. While viable cell number has been shown to 
impact probiotic efficacy [53], it should be noted that there are 
examples of probiotics that convey beneficial health effects 
even in pasteurized form [54].

A prebiotic is defined as a substrate that is selectively used 
by host microorganisms conferring a health benefit [55]. This 
updated definition has expanded the description of a prebiotic 
to other food components such as polyphenols and fatty acids 
in addition to oligosaccharides (e.g. fructooligosaccharides, 
galactooligosaccharides and human milk oligosaccharides) 
and dietary fibers. Dietary fibers are carbohydrate polymers 
with three or more monosaccharide units, which are neither 
digested nor absorbed in the small intestine. They belong to 
the following categories—edible carbohydrate polymers natu-
rally occurring in the food as consumed;edible carbohydrate 
polymers that have been obtained from food raw material 
by physical, enzymatic or chemical means and which have 
a beneficial physiological effect demonstrated by generally 
accepted scientific evidence [56]. If isolated fibers or prebiotic 
compositions are tested in a microbiota intervention study, the 
following parameters could be considered for characteriza-
tion: Source of fiber; carbohydrate/sugar composition; purity 
of fiber including residual mono- and disaccharides that may 
be present in the fiber preparation; degree of polymerization, 
average molecular weight and molecular weight distribution 
range and glyosidic linkages. Solubility and viscosity as well 
as data supporting resistance to digestion should be available.

To identify a molecule as a fiber, resistance to digestion 
must be demonstrated. A common in vitro assay used to deter-
mine total dietary fiber content is the AOAC method 2009.01 
[57], which uses pancreatic α-amylase and amyloglucosidase 
to mimic carbohydrate digestion. However, the absence of 
brush border enzymes in this assay is a limitation. This is 
particularly true for glucose-based α-glycosidic-linked oligo-
meric dietary fiber candidates whose in vivo digestibility is 
poorly predicted. Digestibility assessments (glucose response) 
in mice or humans may be warranted in such cases [58].

https://icsp.org/
http://www.fungaltaxonomy.org
https://www.mycobank.org
https://www.mycobank.org
https://www.wfcc.info/collections/
https://www.wfcc.info/collections/
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In their glycosylated and polymeric forms, polyphenols are 
usually poorly absorbed in the upper gut and pass into the 
large intestine where they can act as microbial modulators 
[59]. If isolated polyphenol preparations are used in a micro-
biome intervention study, the source of polyphenols should 
be described and their chemical structure should be character-
ized including oligo-/polymer content and degree of polym-
erization. The amount of polyphenol in an intervention can be 
underestimated as some ingredients and foods, depending on 
the matrix (whole fruit, fruit powder, plant or fruit extracts) 
and the process used to prepare food or ingredients, can also 
contain polyphenols. Non-extractable polyphenols (NEPP) 
include all those phenolic compounds that are not extracted 
with the solvents of choice and, therefore, are not assessed 
in most polyphenol analyses [60]. NEPP consist of polyphe-
nols that belong to different classes, such as macromolecular 
polyphenols or single polyphenols associated with cell wall 
macromolecules [61]. A recent re-evaluation of the polyphe-
nol content of different food products has demonstrated that 
NEPP could represent a significant proportion of the total 
polyphenol content of food and may be considered as the 
major fraction of plant food polyphenols in some cases [62, 
63]. These NEPP are not absorbed in the small intestine, reach 
the colon together with fiber and other undigestible constitu-
ents and can be extensively metabolized by the gut microbiota 
into smaller phenolic compounds that are better absorbed and 
could persist in blood circulation until 48 h after consumption.

In addition to the general requirements for a suitable con-
trol (e.g., matched to the test product in terms of sensory char-
acteristics, appearance, energy content, nutrient composition 
and route of administration), the placebo/control product 
should be selected on the basis of having a minimal effect 
on microbiota composition and/or activity. Maltodextrin is 
frequently used as control product in prebiotic interventions, 
but there is some evidence that maltodextrin can alter micro-
biota composition and increase colonic volume when used 
at high doses [64]. Microcrystalline cellulose could be used 
as a control in interventions where isolated dietary fibers are 
studied, as it contains minimal energy and is less fermented 
by gut microbes compared to alternative control fibers [65].

Compliance

The validity and relevance of any intervention study depends 
on a high level of participant compliance, i.e., the degree with 
which a study subject adheres to the experimental protocol. 
Hence, factors affecting compliance should be considered 
when designing the study to maximize protocol-related com-
pliance. Assessment of compliance with dietary interventions 
is necessary to understand the observed magnitude of effect of 
the intervention. Hence, methods for measuring and improv-
ing compliance should be implemented. Factors affecting 

compliance in intervention studies have been covered exten-
sively previously [4].

Specific additional factors that may impact compliance in 
human gut microbiota intervention studies include the sam-
pling burden, particularly, fecal sampling and storage of fecal 
samples by participants at their home. In most microbiota 
studies involving collection of fecal samples, participants are 
required to store samples in their home freezers immediately 
and then bring them to their next study appointment or col-
lection point. At present, there is little information available 
how sampling aversion may affect study compliance. A survey 
conducted as part of the Flemish Gut Flora Project indicated 
that only 5% of subjects who completed the full protocol con-
sidered quitting because of sampling aversion and only 2.8% 
of respondents indicated that the requirement to store fecal 
samples in their home freezer was the reason to quit participa-
tion. The most important elements of the fecal sampling pro-
cedure captured from the survey were clear sampling manuals, 
sampling hygiene and ease of sample handling [66]. Although 
the overall drop-out rate appeared to be low due to sample 
aversion and home storage requirements, it seems prudent to 
provide suitable kits with clear instructions and easy handling.

Specific biomarkers for intake, e.g., analysis of blood, 
urine or fecal metabolites can be used as an independent and 
objective measure of compliance and these should be used if 
possible.

The presence of specific probiotic strain(s) used in the 
intervention can be determined in fecal samples collected dur-
ing and at the end of an intervention and compared to baseline 
samples collected prior to intervention. This can be achieved 
using targeted qPCR analysis.

Presence of alkylresorcinol metabolites in urine can corre-
late with the intake of whole grains and cereal brans (particu-
larly rye and wheat) and can be used as a short/medium-term 
biomarker in such interventions [67]. However, phenolic com-
pounds can be lost in purified fibers. Urinary or fecal ferulic 
acid or serum dihydroferulic acid have also been described 
as possible markers for rye bran or whole-grain wheat intake 
[68, 69].

Increase in fecal short-chain fatty acids or decrease in fecal 
pH at the end of the study compared to baseline sample prior 
to intervention can be an indicator of fermentable fiber intake. 
However, these are related to microbial activity and variation 
in these measures could reflect variation in microbial response 
to these fibers.

Depending on the type of polyphenol used in the inter-
vention, blood, urinary or fecal biomarkers could be used to 
measure compliance. For polyphenols with low bioavailability 
(e.g., conjugated or polymeric polyphenol forms) that cannot 
be measured directly in blood samples, the principal micro-
bial metabolites described by [59] could be used to monitor 
compliance. One should also consider that the gut microbi-
ota shows high inter-individual variability for its capacity to 
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produce different types of metabolites from the same family 
of polyphenols. Indeed, study participants could be stratified 
by their polyphenol-metabolizing phenotypes producing dif-
ferent types of active metabolites responsible for the health 
benefits. These metabotypes could reflect the gut microbiota 
composition and metabolic status and become markers for 
gut-microbiota related polyphenols health benefits [70].

Defining acceptable levels of compliance should be done 
a priori and a major deviation should result in the exclusion 
of non-compliant subjects.

Outcome assessment

To demonstrate an intervention can confer health benefits to 
the host via interactions with the microbiota, both microbiota- 
and host-specific assessments should be made. A number of 
parameters can be measured, and the metric studied is depend-
ent on the type of intervention used and its intended effect. 
Such assessments can evaluate the microbial landscape (typi-
cally bacterial cell populations, composition/abundance or its 
genetic content/metabolic potential) and/or the biochemical 
output of the microbiome and its metabolic exchange with 
the host. Health benefits can occur not only through immuno-
logical and biochemical mechanisms but also through more 
complex interactions along gut-brain axis. Understanding 
microbiota composition is particularly important from an 
immunological perspective while characterizing microbial 
function is important to understand the metabolic capacity of 
the microbiota and the downstream impact of its metabolites 
on host physiology and biochemistry. Host-specific meas-
ures should also be assessed providing a functional endpoint 
related to health. Such measurements can be diverse and are 
directed by the anticipated outcome of the intervention. Below 
is a summary of endpoints or markers that have been used to 
demonstrate a microbial effect on host health (summarized 
in Table 1).

Assessing microbiota composition and diversity

Molecular approaches are typically used to study the micro-
biota primarily based on the sequence of the phylogenetic 
marker—small subunit ribosomal RNA (SSU rRNA) 
sequence (16S in prokaryotes and 18S ribosomal RNA in 
eukaryotes) [71]. Currently, the most commonly used method 
for the assessment of gut microbiota composition and diver-
sity is sequencing of SSU rRNA gene coding fragments. This 
approach is typically referred to as 16S rRNA gene sequenc-
ing, while next generation sequencing (NGS) is a general term 
that in microbiota studies can refer either to targeted ampli-
con sequencing or shotgun sequencing [72]. NGS enables 
the comprehensive analysis of the microbiota and generates 

an output that can be interpreted at various levels. Sequenc-
ing data are typically summarized into bins of highly similar 
sequences, operational taxonomic units (OTUs). Based on 
the number of reads of OTUs various analyses can be per-
formed including calculation of diversity indices (α and β), 
semi-quantitative analysis, multivariate statistical analysis and 
correlation with host or environmental factors. NGS is by far 
the most applied approach in microbiota studies. However, it 
has some disadvantages, particularly for intervention studies. 
One major drawback is that the read length for NGS is short 
(typically 2 × 250–300 bp for Illumina) and only a portion of 
the SSU rRNA gene can be read, causing a loss of sensitiv-
ity (most taxa cannot be reliably defined at the species level, 
although high confidence identification of higher taxonomic 
rank is possible) [73]. Even when performed at significant 
sequencing depth, NGS provides information only about pre-
dominant taxa in the ecosystem, while species of interest in an 
intervention study might be subdominant and therefore, below 
the detection threshold of sequencing. Alternatively, targeted 
methods that use optimized regions of the SSU rRNA gene or 
other genomic regions that provide higher resolution for the 
taxon of interest can be used to quantify specific groups of 
organisms (typically genus or species members) in complex 
samples. These methods include fluorescent in situ hybridiza-
tion (FISH) analysis and quantitative polymerase chain reac-
tion (qPCR). FISH is the only method that allows direct visu-
alization of histological localization of microbes in the tissue 
and thus gives an insight into correlation between microbial 
presence and any observed histopathological changes. The 
usefulness of this technique was demonstrated in one animal 
study showing that certain dietary emulsifiers could alter 
mucus structures allowing gut bacteria to penetrate deeper 
into the mucus layer and closer to the epithelial cells, which

induced low-grade inflammation [74]. A limiting tech-
nical demand of FISH analysis is that microbial cells have 
to be fixed prior to analysis. This means that samples have 
to be pre-prepared while still fresh. qPCR is a DNA based 
method that allows a rapid and sensitive method of detection 
and quantification of microbial groups at various levels of 
taxonomic resolution [75]. Analysis of microbiota by qPCR 
is particularly convenient if one aims to measure the effect of 
a dietary intervention on a specific microbial group of interest, 
e.g., for assessing the abundance of typical probiotics—Bifi-
dobacterium and Lactobacillus—during dietary intervention. 
Moreover, both FISH and qPCR are quantitative methods, 
enumerating microorganisms directly in situ or indirectly by 
measuring SSU rRNA copy number. Such stand-alone, quanti-
tative data have advantages, especially when being correlated 
with other absolute data compared to relative abundances 
typically used in metataxonomics. The most comprehensive 
pre-designed methods for microbiota assessment are micro-
arrays (DNA arrays). Microarrays are based on simultaneous 
hybridization of thousands of molecular probes with nucleic 
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acid material from a complex microbiota sample. Several phy-
logenetic microarrays have been developed for the analysis of 
the human gut microbiota [18, 76, 77]. Microarrays provide 
a general overview of the ecosystem response and enable the 
sensitive detection of intervention probiotic species. This can 
include stimulated and suppressed microbial groups as was 
demonstrated with inulin-type fructans in obese women [78]. 
The major limitation of microarrays is the incomplete cover-
age of the ecosystem (that still has not been described) while 
the advantages include high reproducibility, simultaneous 
identification and quantification. Particularly because of the 
high reproducibility and similar and comparable output of 
the analysis of a large number of samples, microarrays are a 
useful method for defining (complex) microbiota signatures 
that are relevant for a dietary treatment, as exemplified by the 
microbiota-based definition of responders to the low FOD-
MAP diet [79]. In the area of microbiota analysis, technologi-
cal developments are rapid, and novel or improved versions 
of the existing methods emerge regularly. Furthermore, no 
consensus regarding the use of one particular methodology for 
assessing gut microbiota resulting in highly variable datasets 
in the literature, which are often difficult to compare.

Metagenomics is a powerful integrative approach that ena-
bles analysis of microbiome functional potential and diversity 
based on sequencing of the total genomic material of intestinal 
samples [80]. This can yield information about specific func-
tional shifts in addition to species- and even up to strain-level 
variation, which is particularly relevant given the high func-
tional redundancy of the gut microbiome [81], whereby differ-
ent microbes can perform the same function [82]. Due to the 
high analytical costs and computational needs, metagenomics 
has not yet been widely applied in dietary intervention stud-
ies. However, it has been applied for predicting personalized 
postprandial glycemic responses [83], for studying the effects 
of probiotic versus flaxseed mucilage on the gut microbiota 
and metabolic risk markers [84], and for providing mecha-
nistic insights into diet-microbiota–health interactions in dia-
betic individuals [85]. Most computational profiling tools for 
metagenomics are reference-based [86–88], but the lack of 
genomes for a large fraction of intestinal inhabitants limits 
their performance. Improvements of these reference databases 
are essential for the progress of the field, and recent work 
using cultivation and metagenomics assembly is supporting 
this. For example, the annotation of over 1500 cultured gut 
microbes enabled the annotation of metagenomic reads to 
increase from 50 to > 70% and the large-scale metagenomic 
reconstruction of over 150,000 microbial genomes (77% of 
which were from previously uncharacterized species) from a 
large set of metagenomic samples. This increased the median 
annotation rate to 95% [89], altogether facilitating higher-reso-
lution descriptions of the human gut microbiome [90]. Finally, 
it should be noted that interaction between humans and their 
microbes is complex and that expression of particular genes 

does not depend solely on the available genetic portfolio, 
which can be assessed via metagenomic analysis.

Considerations for microbiota analysis related 
to sample collection and analysis

Several comprehensive reviews on the essentials of conduct-
ing a microbiota study have been published [66, 80, 91–94]. 
These articles provide practical recommendations that are 
briefly summarized here for fecal samples, the most common 
sample source for intestinal microbiota in dietary interven-
tion studies. In most clinical studies home sampling with 
immediate freezing is the recommended and most attainable 
choice for sample collection. Special care must be taken to 
maintain the cold chain during the transport to study center, 
as freeze–thaw cycles increase the risk of altering the commu-
nity composition. This is especially relevant for protocols that 
include sample fractionation, e.g., to pellet cells before DNA 
extraction, as this leads to loss of cell-free DNA from bacte-
ria that lyzed during freeze–thawing. Use of mechanical cell 
lysis prior to DNA isolation ensures that the more recalcitrant 
microbes are correctly represented in the community DNA 
[95]. Use of mock communities, either in th form of a bacte-
rial cell mixture or community DNA, is highly recommended 
for identification of potential sources of bias, especially when 
setting up the analytical pipeline [95]. Although the sequenc-
ing platform used and the choice of bioinformatic tools and 
parameters can considerably influence the microbial profiles 
measured, their discussion is outside the scope of this article. 
For literature on this topic, please see the following articles: 
[92, 93, 96, 97]. While the current literature is partly incon-
clusive to suggest best practices for all decisions on sample 
handling and analysis when conducting a microbiota study, 
it is essential to maintain the same methodology throughout 
the study.

Large, population-level microbiota studies indicate that 
at best, ca. 20% of the overall microbiota variation can be 
explained with the commonly collected metadata, including 
diet, anthropometry and medication [35]. Previously ignored 
factors such as stool consistency, transit time [98] and timing 
of fecal sampling [99] are now known to influence the micro-
bial signature of samples and hence emerge as novel sources 
of variation in microbiota studies. It can be argued whether 
these variables are more biological or technical in nature, but 
consideration of these factors will assist researchers in de-
noising the identification of microbiota treatment effects in 
intervention studies.

Considerations for bioinformatics and statistical 
analysis

The general data analysis pipeline for microbiota stud-
ies, which should be documented prior to initiation of the 
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study, aims at interpreting data matrices in which measures 
of microbial features including taxa abundance, presence of 
functional markers, immunological markers and metabolites’ 
abundance are cross referenced with the samples in the study 
and its associated metadata. In several cases (e.g., 16S rRNA 
gene sequencing) the data matrix contains count rather than 
continuous data with many zero values, which cannot be log-
transformed to gain more normal distribution. Hence, statisti-
cal models based on negative binomial or poisson distribution 
should be used for reliable identification of taxa that differ 
in abundance between study groups [100, 101]. Typically, 
uneven sequencing across samples further introduces biases 
that should be partially tackled, e.g., by using rarefaction 
approaches or using read count as offset in statistical models. 
Sequencing-derived microbiota measurements also suffer for 
compositionality issues (i.e., the values are fractional, not 
absolute) that can generate false correlation and differential 
features. Different approaches, such as flow cytometry [102] 
and qPCR [103] have been introduced to enable quantitative 
microbiota profiling to complement the current practices and 
to specifically overcome the issues related to compositionality 
of relative abundance data.

Analysis approaches include unsupervised exploration 
of the data such as dimensionality reduction techniques, or 
heatmap-based and network-based visualizations that can 
provide indications for statistical hypothesis-testing analy-
ses. Supervised methods are instead based on univariate or 
multivariate statistics with tools such as analysis of variance 
(ANOVA) or permutational multivariate analysis of variance 
(permANOVA) that can test the significance of separation 
between groups given a meaningful measure of inter-sample 
beta-diversity. Several approaches for biomarker detection 
and assessment are available from univariate and multivari-
ate statistics with additional tools specifically developed for 
microbial data. Complementary to the statistical approach, 
machine learning can be used to train learning models to use 
the microbiota as a predictive tool and to assess the strength 
of association between the microbiota and conditions of inter-
est without assumptions on the underlying distribution of the 
measurements.

Between group comparisons should be generally prior-
itized to evaluate the effects of the intervention on the micro-
biota, but especially in small and moderately sized parallel 
arm studies, the large within-group microbiota variation and/
or the potential between-group microbiota difference already 
at baseline necessities the use of within-group (paired sample) 
comparisons (e.g., [104]). In this case, the baseline microbiota 
can and should be used as a covariate.Assessing microbial 
endpoints

Typical microbiota-related endpoints derived by composi-
tional analysis in dietary intervention studies include alpha- 
and beta-diversity, taxa richness, and the relative abundance 
of individual taxa, typically genus-level and higher. However, 

giving biological context to any of these measured param-
eters is disputable. A major limitation is that the microbiota is 
still not fully described, and due to enormous inter-individual 
variability, many, even uncultured species, have not yet been 
detected. It has been estimated that comprehensive analysis 
of the gut ecosystem of over 40,000 individuals would be 
needed to estimate Western European microbiota richness. 
Nevertheless, dysbiosis, referring to disturbed gut microbiota 
composition, was detected in a number of diseases by compar-
ing microbiota of patients and controls. Lower alpha-diver-
sity, enrichment or depletion of specific bacteria and often 
enrichment in bacterial virulence factors can be associated 
with microbial dysbiosis characteristic of many chronic dis-
eases. Based on the markers of dysbiosis it is possible, to 
some extent, to define desirable microbial endpoints, although 
none of these endpoints can be seen as an absolute marker of 
health, as will be discussed below.

Traditionally recognized probiotic bacteria, members of 
genera Lactobacillus and Bifidobacterium are perceived as 
beneficial for host health and their increase during an inter-
vention is generally considered beneficial from a scientific 
rather than a regulatory perspective. There are many dietary 
interventions that showed a positive impact on the host cou-
pled with an increase in these commensal bacteria [105]. 
However, there are examples of successful dietary interven-
tions that reduced the abundance of these beneficial bacteria 
while achieving improvement of host health [106].

Elevations in the abundance of butyrate-producing bacteria 
are also generally considered beneficial for health. There are 
several metabolic pathways for butyrate production that can be 
performed by different genera belonging to Ruminococcaceae 
and Lachnospiraceae families [107]. Among the butyrate-pro-
ducers that include, among others, Roseburia, Anaerostipes, 
Coprococcus and Faecalibacterium genus, the latter is widely 
recognized as a marker of a healthy microbiota [108]. Another 
more recently recognized beneficial microbe is Akkermansia 
muciniphila, particularly in obesity and metabolic disorders, 
although its decreased abundance has also been reported in 
other pathologies [109]. Akkermansia muciniphila is a preva-
lent and relatively abundant intestinal microbe of humans of 
different ages. It typically reaches abundance between  108 and 
 109 cells per gram of feces and represents between 1 and 4% 
of the total microbial community [110, 111]. Several stud-
ies have reported, using different methods, decreases in the 
abundance of this bacterium as BMI increases [112]. It has 
been shown that individuals supporting a higher abundance of 
Prevotella were in general more metabolically healthy [113].

Alpha diversity is an ecological measure that reflects the 
microbiota richness (number of different species or other taxo-
nomic units) and evenness (relative abundances of different 
taxa). Beta-diversity reflects the heterogeneity of the micro-
biota among the analyzed samples and is typically calculated 
as the Bray–Curtis dissimilarity index that can vary between 



3357European Journal of Nutrition (2020) 59:3347–3368 

1 3

0 (identical samples) and 1 (no compositional overlap). These 
endpoints are typically compared between the treatment 
groups and/or the timepoints (baseline and post-intervention). 
Their delta values can also be calculated to measure the direc-
tionality and magnitude of change. Variance partitioning, e.g., 
with permutational ANOVA (permANOVA) of beta-diver-
sity provides a useful measure to quantify and rank order the 
sources of variation in the microbiota data to the intervention 
versus other effects [11].

High microbiota diversity richness, as well as the gene 
richness from metagenomic studies is generally considered 
desirable, health-related microbiota endpoint. This stems from 
the fact that in any ecosystem community structure and sta-
bility are generally supported by high diversity which builds 
in metabolic redundancy and the ability to respond to envi-
ronmental challenges or stressors without disruption of com-
munity structure. However, it should be noted that infants are 
an exception from this general rule as, especially in breastfed 
infants, their microbiota is simple and dominated by a single 
genus—Bifidobacterium [114]. Although high diversity and 
“adult-like” microbiota in infants is associated with health 
risks such as atopic disease [115], the diversification of the 
microbiota and increase in butyrate-producers from the age 
of four to six months is considered developmentally appropri-
ate and has been associated with reduced risk of asthma and 
wheezing [116]. This demonstrates that it is essential to take 
into account the distinct phases of microbiota assembly and 
focus on age-appropriate development.

Even in adults high diversity alone does not always 
reflect “health”. For example, an increase in species rich-
ness [117] has been reported in colorectal cancer patients. 
Rather, this should be considered along with other ecologi-
cal parameters, such as structural stability over time [11, 
79, 118, 119]. Diet, especially the diversity and quanti-
ties of chemically distinct substrates reaching the colon 
is likely to play an important role in driving and main-
taining species richness and metabolic diversity within the 
gut microbiota. However, a reduction in fecal microbiota 
alpha-diversity may not necessarily reflect a deleterious 
impact on host health or indeed reduced microbial health 
service provided to the host.

Assessing functional status of the microbiota

It is important to understand the functions performed by the 
microbiota. Metabolic profiling (metabolomics/metabonom-
ics) aims to simultaneously measure several to thousands 
of low molecular weight metabolites present in a biological 
sample. These metabolites reflect the biochemical events 
occurring within the system from which the sample were 
obtained. In terms of human samples, these compounds can 
arise from host endogenous metabolic processes but also 

those of the gut microbiota, as well as the diet, and interac-
tions between all three. Using metabolic phenotyping, the 
biochemical output (functionality) of the gut microbiome 
can be determined as well as how these outputs impact on 
host biochemistry. This is a powerful technique to assess the 
functional impact of dietary interventions on the microbiota 
and subsequently the host.

Nuclear magnetic resonance (NMR) spectroscopy and 
mass spectrometry coupled to either gas chromatography 
(GC–MS) or liquid chromatography (LC–MS) are typi-
cally used to measure the metabolic profiles. A range of 
sample types can be studied from the host including urine, 
blood (plasma/sera), feces, and saliva. Some studies have 
used intestinal biopsies and aspirate samples collected from 
the small intestine, but the invasiveness of their collection 
means that these samples are rare for intervention stud-
ies. Given their relative ease of collection urine, fecal and 
blood samples are typically analyzed in human studies. The 
fecal metabolome is thought to reflect the metabolic inter-
play between the diet, host and microbiota. A recent study 
including 786 individuals, found ~ 68% of the total variance 
in the fecal metabolome (based on 1116 fecal metabolites) 
was explained by the fecal microbial composition [120]. 
However, it can be argued that as fecal metabolites remain 
unabsorbed from the GI tract they are ‘unseen’ by the host 
metabolic system. As such, urine and plasma/serum samples 
may be more informative regarding the biochemical interac-
tions between the microbiota and host.

Assessing metabolite endpoints

Microbes in the gut can transform intestinal substrates into a 
spectrum of metabolites that can exert local effects in the gut 
or be absorbed from the GI environment, pass through the 
liver and enter the systemic circulation where they can have 
systemic effects. It is now well established that metabolites 
from the gut microbiota, as well as their structural compo-
nents (e.g., bacterial lipopolysaccharide), can influence human 
health. It is also important to consider the kinetics of metabo-
lite production, absorption and clearance from different tis-
sues during nutritional metabolomics studies. Most metab-
olites produced by the gut microbiota from ingested foods 
appear in blood after only 5–7 h of ingestion, and most will be 
cleared from the blood rapidly, with only low levels persisting 
after 12–18 h. This has important implications when trying to 
link microbial metabolites with physiological parameters in 
chronic dietary interventions. In the majority of cases health 
parameters are measured in overnight fasted plasma/serum 
samples, while most microbial metabolites might be cleared 
from the blood in these same samples. Similarly, analytes 
in 24-h urine samples more accurately reflect dietary intake 
over the previous days than spot urine samples. Microbial 
metabolite kinetics is further complicated by the enterohepatic 
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circulation. Such considerations are important when design-
ing experimental schemes to measure microbiota metabolite 
production from particular foods [121] (Table 1).

SCFA are the major end-products of the bacterial fermen-
tation of non-digestible carbohydrates and can be measured in 
fecal, urine and plasma samples. The main SCFAs are acetate, 
propionate and butyrate and these metabolites underlie many 
of the putative health benefits associated with the gut micro-
biota. SCFA have been found to modify many host processes, 
including various metabolic pathways, immunological func-
tions and the expression of several genes with potential to 
impact on health, such as, lowering the pH of the gut [122] 
and the facilitation of mineral absorption [123].

Depending on their chemical structure, amino acids can 
be metabolized by the intestinal microbes into beneficial 
metabolites or converted to products potentially harmful for 
the host [124]. Sulfur amino acids and sulfated compounds 
can be metabolized to hydrogen sulfide  (H2S), a toxic com-
pound associated with DNA damage and intestinal inflamma-
tion [125, 126]. Bacterial decarboxylation of amino acids can 
produce biogenic amines and polyamines. This includes the 
production of agmatine, tyramine, histamine, cadaverine and 
putrescine (which can be further catabolized to spermidine 
and spermine). Polyamines are important for maintaining the 
structural integrity of nucleic acids and membranes as well as 
in gene regulation and translation while histamine can induce 
immunoregulatory effects [127]. However, high amounts of 
these metabolites have been implicated in oxidative stress, 
inflammation and genotoxicity [128]. Keto acids (α-keto-
β-methylbutyrate, α-keto-γ-methylvalerate, α-ketocaproate, 
α-keto-β-methylvalerate) are produced from the bacterial deg-
radation of branched chain amino acids and branched chain 
fatty acids arise exclusively from the bacterial fermentation 
of these products. Several of these metabolites can alter the 
mucosal immune system and modify signaling pathways in 
epithelial cells [129, 130]. Some of the microbial metabolites 
of tryptophan, including indole, indole-acetate and 3-methyl 
indole (skatole), are known ligands for the aryl-hydrocarbon 
receptor, as well as tryptophan itself.

Bile acids are another major class of metabolites strongly 
influenced by the gut microbiota. These compounds hold a 
key role in the digestion and absorption of lipids, nutrients 
and lipid-soluble vitamins. Bile acids are continually circu-
lated between the host liver and intestinal microbes, which 
contribute significantly to the diversity of the bile acid pool. 
Microbially produced secondary bile acids are potentially 
more cytotoxic for the host than the primary bile acids and 
have been linked with cholesterol gallstone formation and 
colon cancer [131, 132]. However, the production of deoxy-
cholic acid has been associated with protection against C. dif-
ficile infection, where patients with C. difficile excrete lower 
amounts of secondary bile acids in their feces [133]. Res-
toration of 7α-dehydroxylation activity, via fecal microbial 

transplantation, has been shown to enhance resistance to C. 
difficile [134, 135].

Assessing immunology‑related microbiota–host 
interactions

The gut microbiota contributes significantly to immune effec-
tor cell activity and maturation [136, 137] and its dysbiosis 
has been associated with autoimmune diseases including 
inflammatory bowel disease, food allergies and asthma [138]. 
The gut microbiota affects both innate and adaptive immu-
nity through multiple mechanisms including direct contact 
with immune cells (i.e., dendritic cells, natural killer cells, 
macrophages), induction of epigenetic modifications via 
histone acetylation/methylation in tissues [139] and through 
the production of signaling molecules including SCFA and 
bile acids. For example, the anti-inflammatory and immuno-
modulatory effects of SCFAs are mediated through the dif-
ferential activation of G protein coupled receptors (GPCRs) 
including GPR109a, GPR41 and GPR43 [140]. While bile 
acids differentially activate FXR and TGR5, which attenuate 
pro-inflammatory innate immune response in several autoim-
mune diseases including IBD [141].

Microbial sensing by the host immune system is achieved 
due to the presence of pattern recognition receptors (PRRs), 
which recognize conserved microbe-associated molecular 
patterns on bacteria. These PRRs include toll-like receptors 
(TLRs) and nucleotide oligomerization domain like recep-
tors (NLRs), present on both immune and non-immune cells. 
These play a key role in the recognition of extracellular and 
intracellular bacteria and control the inflammatory response 
[142]. Ligand activation of NLRs and TLRs and their down-
stream signaling pathways ultimately lead to the expression 
of inflammatory cytokines and antimicrobial molecules [143]. 
Dysbiosis is frequently found in the GI systems of humans 
that exhibit chronic inflammation and this may play a critical 
role in shaping the composition of microbiota and the result-
ing dysbiosis [144].

A range of approaches are available to assess the host 
immune system including the measurement of cytokines 
and chemokines, gene expression and/or protein expression 
(reviewed [145]). Cytokines are one of the most common tar-
gets to be measured. Interleukin-1β (IL-1β) is a potent pro-
inflammatory cytokine that exerts a range of systemic and 
local effects including promotion of immune cell recruitment 
to the site of inflammation; activation of dendritic cells, mac-
rophages and neutrophils [146]. A variety of other inflam-
matory biomarkers can be measured. In a metanalysis on the 
effect of probiotic supplementation on inflammatory biomark-
ers in adults (42 randomized clinical trials, 2258 adults) a 
significant reduction was reported in serum C-reactive protein 
(CRP), tumor necrosis factor-α (TNF-α), IL-6, IL-12 and IL-4 
concentrations [147]. However, a meta-analysis focusing on 
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the elderly (10 randomized controlled studies, 689 elderly 
individuals) did not demonstrate any significant benefit of 
microbiota-driven therapy in decreasing the inflammatory 
responses of elderly individuals to a range of inflammatory 
markers including TNF-α, IL-6, IL-10, CRP, IL-1β, IL-l8 or 
MCp 1 [148].

Traditionally, the single-plex ELISA has been used in the 
assessment of cytokines and chemokines. However, despite 
the accuracy and value of this technology it precludes the 
capacity to investigate cytokine network interactions. In 
contrast, multiplex immunoassays simultaneously measure 
multiple biomarkers, including a large number of cytokines 
and chemokines, using minimal sample volumes allowing 
multifaceted immune responses to be studied [149, 150]. 
Another commonly used approach in human studies is qPCR 
[151]. This technique allows cytokine expression (mRNA) 
and pattern recognition receptors (TLRs, NLRs) to be ana-
lyzed across a wide range of tissues. Importantly, minimum 
information for publication of quantitative real-time PCR 
experiments guidelines should be followed when using such 
approaches [152].

Regardless of the approach taken to investigate microbi-
ota–host immunological interactions, the type(s) of sample 
collected are crucial. Peripheral blood samples are reflective 
of systemic immune effects but less so the colon. In contrast, 
fecal samples are more representative of the colonic environ-
ment but do not fully reflect the events within the mucosal 
tissue. From a microbiota perspective, there are two distinct 
ecosystems in the colon both with different metabolic and 
immunological functions. This includes the luminal microbi-
ota, accessible from fecal samples and representing the ‘criti-
cal mass’ for dietary and other metabolic conversions, and the 
mucosal-associated microbiota, directly interacting with the 
intestinal immune system and accessible from tissue biopsies 
[153]. To date, most gut microbiota studies have assessed 
microbial diversity through analysis of the luminal micro-
biota which poorly reflects microbial diversity at the mucosal 
surface [154, 155]. Mucosal biopsies exhibit more microbial 
diversity and pronounced differences in the dominant bacte-
rial populations than fecal samples [154]. They are consid-
ered the “gold standard” for studying the crosstalk between 
mucosal associated microbes, the intestinal epithelium and 
tissue-specific immune responses. However, mucosal biop-
sies are surgically invasive, requiring specialist facilities for 
collection, and provide limited quantities of tissue restricting 
multi-omics based analysis of gut microbiota function [59]. 
Additionally, the bowel cleansing preparation used prior to 
colonoscopy (and biopsy collection) alters the composition 
of both the luminal and mucosal gut microbiota [156–158] 
and molecular targets in tissue [159, 160]. As such, biopsies 
are rarely collected in studies focused on dietary interven-
tions in healthy humans. Although fecal samples appropri-
ately collected [66, 161] are less reflective of the mucosal 

microbiota–host interaction, they have an advantage in terms 
of quantity of material available, convenience of sampling 
and arguably a wider applicability. Multiple sampling points 
are recommended in studies including baseline, early, mid-
dle and late time points, if possible [145]. Careful selection 
of sample collection (preservatives, additives used), prepara-
tion methods for processing tissue, sample storage and the 
number of freeze/thaw cycles (preferably a single cycle) is 
required as these can directly impact on the measured out-
comes [162–165].

Assessing host outcomes

The parameters measured are determined by the central 
research question and over-arching hypothesis. This can 
include measures such as body weight, BMI, fat mass and fat 
percentage or physiological measures, such as, blood pressure 
(BP), cognitive function and appetite.

There are numerous metrics proposed to reflect different 
aspects of gut health such as transit time, and stool volume 
and frequency. However, many measures are indicative of 
poor or impaired gut health rather than gut health per se 
such as bloating, abdominal cramps and diarrhea [166]. 
Measures of gut permeability are promoted as markers of 
gut health. Sugar tests (mannitol, lactulose, rhamnose) are 
commonly used but their accuracy is questionable and their 
potential to act as substrate for the gut microbiota raises 
questions over their validity. Other markers of barrier func-
tion include fecal A1 anti-trypsin and Reg-1 and plasma 
lipopolysaccharide. Plasma concentrations of intestinal-
fatty acid binding protein provide information on gut dam-
age while fecal myeloperoxidase and neopterin can be used 
as markers for intestinal inflammation.

Statistical analysis plan

Except for exploratory trials, the statistical hypothesis and 
principal features of data analysis of the primary variable(s) 
should be specified at the stage of study preparation and 
before submission of the protocol to ethics and/or authori-
ties. This should be in the form of a statistical section of the 
protocol. Also, a Statistical Analysis Plan (SAP) describing 
the detailed procedures for executing the statistical analysis 
of the primary and secondary variables may be written after 
finalizing the protocol. The SAP should be reviewed and 
possibly updated as a result of the blind review of the data 
and agreed between parties (Sponsor and Principal Inves-
tigator) before breaking the blind with formal records of 
SAP finalization date and unblinding date. If a microbial-
related variable(s) has been selected as a primary or second-
ary endpoint(s) of the clinical study, the methodology for 
analysis cannot be changed after breaking the blind. Further 
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analysis could be done as exploratory only. All these pro-
cedures ensure validity of the data. Failing to specify in the 
study protocol the information on who performs the analysis 
and where it is to be performed may greatly restrict options 
for ethical reasons. High-quality journals will also likely 
require proof that the SAP was conceived before study 
analysis in addition to the requirement of the study proto-
col deposition. Most high-quality journals require deposi-
tion of raw sequencing data and access to all relevant data. 
Code relating to the statistical tools used in the analysis 
should also be publicly available where possible. The above 
requirements may sometimes clash with the need to protect 
personal data. In this regard, it is important to note that all 
microbiota-related studies must be compliant with the new 
GDPR in Europe (see section on legislative aspects).

Reporting of adverse events

In all clinical trials adverse effects are systematically moni-
tored as part of good clinical practice (GCP). The safety pro-
files of nutritional interventions are generally considered very 
good when approved ingredients are used in the intervention.

Legislative aspects in relation to foods 
and health claims in EU

One common objective of conducting human microbiota 
food interventions is in support of food  related health 
claims. From a regulatory perspective in the European 
Union (EU), ‘Food’ is defined as any substance or prod-
uct, whether processed, partially processed or unprocessed, 
intended to be, or reasonably expected to be ingested by 
humans. Thus ‘Food’ includes drink, chewing gum and any 
substance, including water, intentionally incorporated into 
food during its manufacture, preparation or treatment. There 
are many different classifications of foods/food ingredients 
in EU (for example, conventional food, food supplements, 
novel foods, foods for special medical purposes, food addi-
tives) and each of these serves a specific intended purpose 
and is regulated accordingly. The key general principles and 
requirements of food law and the general provisions relating 
to the labelling, presentation and advertising of foodstuffs 
are outlined in legislation [167, 168].

Food, when incorporated into the diet generally pro-
vides a source of energy and nutrition and may promote 
health, reduce the risk of developing a disease or manage a 
disease by dietary means. In contrast, a medicinal product 
is ‘any substance or combination of substances presented 
as having properties for treating or preventing disease in 
human beings; or any substance or combination of sub-
stances which may be used in or administered to human 

beings either with a view to restoring, correcting or modify-
ing physiological functions by exerting a pharmacological, 
immunological or metabolic action, or to making a medical 
diagnosis’ [169]. Thus, even a ‘conventional food’ present-
ing with associated claims relating to preventing or treating 
a disease would be classified as a medicinal product even if 
the efficacy data supported the claims.

Live microorganisms, such as, probiotic bacteria are 
considered food ingredients and depending on their his-
tory of use may be considered novel ingredients in EU. For 
example, any food consisting of, isolated from or produced 
from microorganisms or fungi and that has not been con-
sumed to a significant degree within the EU before 15 May 
1997 would be considered novel. In all there are ten novel 
food categories to consider when determining if a food/
food ingredient is novel or not. For microorganisms that 
have a history of use, a harmonised pre-market risk assess-
ment approach exists—“Qualified Presumption of Safety” 
(QPS). This approach considers if the safety assessment of 
a defined taxonomic group (e.g., genus or group of related 
species) can be made based on their identity, body of knowl-
edge, possible pathogenicity and end use. If the taxonomic 
group does not raise safety concerns or, if safety concerns 
that exist can be defined and excluded, the grouping can be 
granted QPS status. Any strain of microorganism the iden-
tity of which is unambiguously established and assigned to 
a QPS group is free from the need for further safety assess-
ment other than satisfying any qualifications specified. 
While many microorganisms are considered QPS, novel 
microorganisms must undergo evaluation by the European 
Food Safety Authority (EFSA) before being placed on the 
market to ensure safety [170]. An example of a probiotic 
bacteria authorized as a novel food ingredient in the EU is 
Clostridium butyricum MIYAIRI 588.

When planning food studies in subjects, in addition to 
food safety requirements, The Helsinki Declaration, which 
sets out guiding principles for the ethical conduct of human 
studies, GCP Guidelines and the requirements of local ethical 
review boards should be taken into consideration [171, 172]. 
In addition, registration of trial details in a publicly acces-
sible registry is considered best practice and is a requirement 
of many Journals for publication. With the introduction of 
the Clinical Trial Regulation in 2019, the conduct of clinical 
trials on medicinal products in the EU will undergo a major 
change [173]. The assessment and supervision processes will 
be harmonized via an EU portal and a database managed 
by the European Medicine Agency, while the authorization 
and oversight of clinical trials will remain the responsibil-
ity of Member States. Ensuring correct classification of any 
new product in the development phase is important before 
any human trials are planned to ensure regulatory compli-
ance. Food business operators (FBO) involved in conduct-
ing nutrition/food trials involving the microbiota also need 
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to be aware of the compliance requirements outlined in the 
new General Data Protection Regulation (GDPR) which is 
designed to enable individuals to better control their personal 
data—‘any information relating to a person who can be iden-
tified, directly or indirectly, in particular, by reference to an 
identifier such as a name, an identification number, location 
data, online identifier or to one or more factors specific to the 
physical, physiological, genetic, mental, economic, cultural 
or social identity of that person’ [174]. Furthermore, under 
GDPR even organizations outside the EU that collect data 
concerning an EU resident are subject to the jurisdiction of 
the EU regulators.

The Nutrition and Health claims Regulation was the first 
piece of harmonized EU legislation to lay down specific rules 
governing the use of nutrition and health claims made on 
food. It lays down the types of claims, the rules on scientific 
substantiation and the routes for authorization of new health 
claims for foods [175]. It should be noted that specific rules 
apply to certain food classifications, for example, infant for-
mula which is considered the only processed foodstuff fully 
satisfying the nutritional requirements of infants during the 
first month of life. Given this special status of infant formula, 
the use of health claims is prohibited ([176] applies Feb 
2020). For follow-on formula (food for infants when appro-
priate complementary feeding is introduced), nutrition and 
health claims are allowed [176]. Also, in future there may be 
a possibility, following an EFSA assessment, where it is dem-
onstrated that a specific formula manufactured from protein 
hydrolysates reduces the risk of developing allergy to milk 
proteins, that consideration will be given to how to adequately 
inform consumers about that property of the product. Evalu-
ation of health claims is carried-out by the EFSA and to date 
more than 3000 health claims have been evaluated, the major-
ity of which were not considered to be scientifically substanti-
ated [177]. A large number of probiotic-related health claims 
were among these rejections reflecting short-comings in the 
quality of submissions in the main. Key areas where issues 
were raised in relation to probiotic-related health claims were 
insufficient characterization of the ingredients, lack of dem-
onstration that the claimed effect was beneficial to health and 
demonstration that a cause and effect relationship existed and 
was supported by high quality pertinent studies. For the sub-
stantiation of a health claim, the choice of an appropriate out-
come variable(s) and method of measurement(s) are critical. 
EFSA scientific guides and published opinions are a valuable 
source of such information, highlighting beneficial physio-
logical effects and outcome variables which could be accept-
able for claim substantiation, or to address potential health 
relationships. For example, EFSA guidance indicates that GI 
discomfort may be measured using validated subjective global 
symptom questionnaires and changes in one or more of the 
individual symptoms as well as changes in defecation habits 
may be used as supportive evidence for the mechanisms by 

which the food could exert the claimed effect. However, these 
cannot be used alone for the substantiation of a claim on the 
reduction of GI discomfort. Some of the effects not consid-
ered beneficial per se by EFSA were, increasing the number 
of any group of microorganisms, changes in short-chain fatty 
acid production or pH and stimulation of various immunologi-
cal responses [178]. Thus, particular care should be taken at 
the study design phase to ensure that the outcome variables 
chosen to substantiate an effect is indeed considered valid. In 
EU, the statement “contains probiotics/prebiotics” is of itself 
considered as a health claim [179] though noteworthy, Italy 
allows, ‘able to support the balance of intestinal flora’, ‘probi-
otics’ and ‘prebiotics’, to be used on labels as in their assess-
ment these are not health claims [180]. Claims in advertising 
regarding bacteria which are not nutrition or health claims 
may be dealt with under the general rules against misleading 
advertising. Thus, if a statement regarding bacteria does not 
refer to a nutritional benefit or a relationship between a food 
or ingredient and health, the FBO should still hold evidence 
to substantiate the claim. While authorization of health claims 
related to the benefits of the intake of specific microorganisms 
remains challenging, updated EFSA guidance and opinions 
provide valuable guide rails in relation to study design and 
required documentation. Arguably, pre-submission dialogue 
with EFSA to address the design of trials and submission 
requirements would be invaluable to alter the status quo on 
probiotic health claim authorization in EU. A key recommen-
dation is to consider/determine the regulatory classification of 
the proposed intervention in the planning phase, in advance of 
human trials to ensure regulatory compliance.

Conclusion

As the influence of the intestinal microbiota on human health 
becomes more apparent, there is an increasing motivation to 
develop and evaluate nutritional interventions to manipulate 
this microbial-human relationship to improve health. In this 
review we outline important considerations when designing 
and interpreting human studies to reliably establish such links. 
This includes appropriate study design, intervention and con-
trol selection, participant criteria and the appropriate outcome 
measures to demonstrate tangible effects of the intervention 
of host health. With the rapid and continuing evolution of the 
field, both in terms of understanding and the tools available 
to measure microbial–host interactions, the list of outcome 
measures presented is not exhaustive nor static. Care must be 
taken to avoid bias at all levels of the study and negative as 
well as positive outcomes should be reported for transparency 
and confidence.
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