1,112 research outputs found

    A detailed investigation to study the pattern of the interplay of Cyclic AMP Receptor Protein (CRP) of E. coli with its different classes of promoters

    Get PDF
    The activity of most of the promoters in Escherichia coli, involved in the metabolism of sugars other than glucose, is controlled by a CRP (cAMP receptor protein) or CAP (catabolite activator protein). CRP-dependent promoters are differentiated into various classes (Class I, Class II, and Class III) based on its cognate binding site’s position on DNA. The promoters regulated by CAP are differentially regulated by this transcriptional factor and it is also imperative to mention that these promoters vary greatly in respect to the binding site of CAP to its cognate binding site, it has also been reported that either it overlaps with the binding site of RNA polymerase or it present upstream to it. In Class I CAP-dependent promoters, a particular CAP molecule makes protein-protein interaction for the start of transcription. In Class II CAP-dependent promoters, a particular CAP molecule makes multiple interactions for the start of transcription. At last, in Class III-CAP dependent promoters, more than one CAP molecule is involved and activation of transcription is done synergistically. It has also been documented that CAP shows a kind of biphasic behavior in some promoters. So, the main focus of this work is to find out whether this biphasic behavior is true for other E. coli promoters as well. Experiments have been performed to know more about this biphasic nature and the various patterns of interactions of catabolite activator protein (CAP) of E. coli with its different classes of promoters

    Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints

    Full text link
    We discuss data analysis techniques that can be used in the search for gravitational wave bursts from cosmic strings. When data from multiple interferometers are available, we describe consistency checks that can be used to greatly reduce the false alarm rates. We construct an expression for the rate of bursts for arbitrary cosmic string loop distributions and apply it to simple known solutions. The cosmology is solved exactly and includes the effects of a late-time acceleration. We find substantially lower burst rates than previous estimates suggest and explain the disagreement. Initial LIGO is unlikely to detect field theoretic cosmic strings with the usual loop sizes, though it may detect cosmic superstrings as well as cosmic strings and superstrings with non-standard loop sizes (which may be more realistic). In the absence of a detection, we show how to set upper limits based on the loudest event. Using Initial LIGO sensitivity curves, we show that these upper limits may result in interesting constraints on the parameter space of theories that lead to the production of cosmic strings.Comment: Replaced with version accepted for publication in PR

    In situ process quality monitoring and defect detection for direct metal laser melting

    Full text link
    Quality control and quality assurance are challenges in Direct Metal Laser Melting (DMLM). Intermittent machine diagnostics and downstream part inspections catch problems after undue cost has been incurred processing defective parts. In this paper we demonstrate two methodologies for in-process fault detection and part quality prediction that can be readily deployed on existing commercial DMLM systems with minimal hardware modification. Novel features were derived from the time series of common photodiode sensors along with standard machine control signals. A Bayesian approach attributes measurements to one of multiple process states and a least squares regression model predicts severity of certain material defects.Comment: 16 pages, 4 figure

    Incorporating information from source simulations into searches for gravitational-wave bursts

    Full text link
    The detection of gravitational waves from astrophysical sources of gravitational waves is a realistic goal for the current generation of interferometric gravitational-wave detectors. Short duration bursts of gravitational waves from core-collapse supernovae or mergers of binary black holes may bring a wealth of astronomical and astrophysical information. The weakness of the waves and the rarity of the events urges the development of optimal methods to detect the waves. The waves from these sources are not generally known well enough to use matched filtering however; this drives the need to develop new ways to exploit source simulation information in both detections and information extraction. We present an algorithmic approach to using catalogs of gravitational-wave signals developed through numerical simulation, or otherwise, to enhance our ability to detect these waves. As more detailed simulations become available, it is straightforward to incorporate the new information into the search method. This approach may also be useful when trying to extract information from a gravitational-wave observation by allowing direct comparison between the observation and simulations.Comment: 8 pages, 1 figur

    Plans for the LIGO-TAMA Joint Search for Gravitational Wave Bursts

    Full text link
    We describe the plans for a joint search for unmodelled gravitational wave bursts being carried out by the LIGO and TAMA collaborations using data collected during February-April 2003. We take a conservative approach to detection, requiring candidate gravitational wave bursts to be seen in coincidence by all four interferometers. We focus on some of the complications of performing this coincidence analysis, in particular the effects of the different alignments and noise spectra of the interferometers.Comment: Proceedings of the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, WI, USA. 10 pages, 3 figures, documentclass ``iopart'

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Augmented Reality for Railroad Operations Using Head-up Displays

    Get PDF
    693JJ6-18-C-000010A team from MIT\u2019s Human Systems Laboratory designed the locomotive HUD as a wide field of view augmented reality head-up display (AR-HUD). The technical feasibility of an AR-HUD was assessed through literature review and hardware tests. To study human factors issues, an AR-HUD prototype was designed, reviewed by experienced engineers, then implemented in the FRA Cab Technology Integration Laboratory simulator. The engineers\u2019 behavior was not significantly altered and using the AR-HUD reduced the time spent looking away from the forward view. Subjective feedback from the engineers confirmed the acceptability and potential benefit of using HUDs

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (Ό̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ÂŻ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ÂŻ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),Ό̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe
    • 

    corecore