873 research outputs found

    A collimated, ionized bipolar structure and a high density torus in the young planetary nebula IRAS 17347-3139

    Full text link
    We present observations of continuum (lambda = 0.7, 1.3, 3.6 and 18 cm) and OH maser (lambda = 18 cm) emission toward the young planetary nebula IRAS 17347-3139, which is one of the three planetary nebulae that are known to harbor water maser emission. From the continuum observations we show that the ionized shell of IRAS 17347-3139 consists of two main structures: one extended (size ~1". 5) with bipolar morphology along PA=-30 degrees, elongated in the same direction as the lobes observed in the near-infrared images, and a central compact structure (size ~0". 25) elongated in the direction perpendicular to the bipolar axis, coinciding with the equatorial dark lane observed in the near-infrared images. Our image at 1.3 cm suggests the presence of dense walls in the ionized bipolar lobes. We estimate for the central compact structure a value of the electron density at least ~5 times higher than in the lobes. A high resolution image of this structure at 0.7 cm shows two peaks separated by about 0". 13 (corresponding to 100-780 AU, using a distance range of 0.8-6 kpc). This emission is interpreted as originating in an ionized equatorial torus-like structure, from whose edges the water maser emission might be arising. We have detected weak OH 1612 MHz maser emission at VLSR ~ -70 km/s associated with IRAS 17347-3139. We derive a 3 sigma upper limit of < 35% for the percentage of circularly polarized emission. Within our primary beam, we detected additional OH 1612 MHz maser emission in the LSR velocity ranges -5 to -24 and -90 to -123 km/s, associated with the sources 2MASS J17380406-3138387 and OH 356.65-0.15, respectively.Comment: 26 pages, 8 figures. Accepted for publication in Ap

    ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    Get PDF
    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45 '' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist-these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating

    First detection of CO lines in a water fountain star

    Full text link
    [Context] Water fountain stars are very young post-AGB stars with high velocity water maser jets. They are the best objects to study the onset of bipolar jets from evolved stars due to their young dynamical ages. [Methods] We use the Arizona Radio Observatory 10m telescope to observe the CO J=2-1 line and compare the line parameters with that of masers. [Results] We report the detection of 12CO and 13COJ=2-1 lines from IRAS 16342-3814. The inferred 12CO mass loss rate is an order of magnitude lower than the infrared and OH mass loss rates, indicating a very cold and thick O-rich circumstellar envelope around the star. We also find a 12CO expansion velocity of Vexp = 46 +- 1 km/s that is too high for an AGB wind and confirm the systemic velocity of 44 +- 1 km/s. In addition we measure a very low 12CO/13CO line ratio of 1.7. [Conclusions] The first detection of CO lines has provided a new way to investigate the water fountain stars. Given the high expansion velocity of the CO gas and its relation to maser velocities, we infer that the CO emission region is co-located with the OH mainline masers in the warm base of the optical bipolar lobes, while the high velocity OH1612MHz and H2O masers are located in the side walls and at the farthest ends of the bipolar lobes, respectively. Further observations are highly desired to understand the very low 12CO/13CO line ratio.Comment: 5 pages, 1 figure, accepted by A&A Lette

    Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy

    Get PDF
    We present an approach to quantify drug-target engagement using in vivo fluorescence endomicroscopy, validated with in vitro measurements. Doxorubicin binding to chromatin changes the fluorescence lifetime of histone-GFP fusions that we measure in vivo at single-cell resolution using a confocal laparo/endomicroscope. We measure both intra- and inter-tumor heterogeneity in doxorubicin chromatin engagement in a model of peritoneal metastasis of ovarian cancer, revealing striking variation in the efficacy of doxorubicin-chromatin binding depending on intra-peritoneal or intravenous delivery. Further, we observe significant variations in doxorubicin-chromatin binding between different metastases in the same mouse and between different regions of the same metastasis. The quantitative nature of fluorescence lifetime imaging enables direct comparison of drug-target engagement for different drug delivery routes and between in vitro and in vivo experiments. This uncovers different rates of cell killing for the same level of doxorubicin binding in vitro and in vivo

    Herschel Planetary Nebula Survey (HerPlaNS) - First Detection of OH+ in Planetary Nebulae

    Get PDF
    We report the first detections of OH+^+ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672μ\mum to look for new detections. OH+^+ rotational emission lines at 152.99, 290.20, 308.48, and 329.77μ\mum were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2×\times1010^{10} to 4 ×\times1011^{11} cm2^{-2}, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (Teff_{eff} > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for ultraluminous galaxies.Comment: 9 pages, 7 figures; accepted for publication in A&

    Mid-IR period-magnitude relations for AGB stars

    Full text link
    Asymptotic Giant Branch variables are found to obey period-luminosity relations in the mid-IR similar to those seen at K_S (2.14 microns), even at 24 microns where emission from circumstellar dust is expected to be dominant. Their loci in the M, logP diagrams are essentially the same for the LMC and for NGC6522 in spite of different ages and metallicities. There is no systematic trend of slope with wavelength. The offsets of the apparent magnitude vs. logP relations imply a difference between the two fields of 3.8 in distance modulus. The colours of the variables confirm that a principal period with log P > 1.75 is a necessary condition for detectable mass-loss. At the longest observed wavelength, 24 microns, many semi-regular variables have dust shells comparable in luminosity to those around Miras. There is a clear bifurcation in LMC colour-magnitude diagrams involving 24 micron magnitudes.Comment: 5 pages, 4 figure

    Spatially resolved spectroscopy of monolayer graphene on SiO2

    Full text link
    We have carried out scanning tunneling spectroscopy measurements on exfoliated monolayer graphene on SiO2_2 to probe the correlation between its electronic and structural properties. Maps of the local density of states are characterized by electron and hole puddles that arise due to long range intravalley scattering from intrinsic ripples in graphene and random charged impurities. At low energy, we observe short range intervalley scattering which we attribute to lattice defects. Our results demonstrate that the electronic properties of graphene are influenced by intrinsic ripples, defects and the underlying SiO2_2 substrate.Comment: 6 pages, 7 figures, extended versio

    Early Science with the Large Millimetre Telescope: Molecules in the Extreme Outflow of a proto-Planetary Nebula

    Get PDF
    Extremely high velocity emission likely related to jets is known to occur in some proto-Planetary Nebulae. However, the molecular complexity of this kinematic component is largely unknown. We observed the known extreme outflow from the proto-Planetary Nebula IRAS 16342-3814, a prototype water fountain, in the full frequency range from 73 to 111 GHz with the RSR receiver on the Large Millimetre Telescope. We detected the molecules SiO, HCN, SO, and 13^{13}CO. All molecular transitions, with the exception of the latter are detected for the first time in this source, and all present emission with velocities up to a few hundred km s1^{-1}. IRAS 16342-3814 is therefore the only source of this kind presenting extreme outflow activity simultaneously in all these molecules, with SO and SiO emission showing the highest velocities found of these species in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component with a FWHM \sim 700 km s1^{-1}. The extreme outflow gas consists of dense gas (nH2>_{\rm H_2} > 104.8^{4.8}--105.7^{5.7} cm3^{-3}), with a mass larger than \sim 0.02--0.15 M_{\odot}. The relatively high abundances of SiO and SO may be an indication of an oxygen-rich extreme high velocity gas.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Letter
    corecore