4 research outputs found

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Energy exchange and water budget partitioning in a boreal minerogenic mire

    No full text
    This study investigated patterns and controls of the seasonal and inter-annual variations in energy fluxes (i.e., sensible heat, H, and latent heat, lambda E) and partitioning of the water budget (i.e., precipitation, P; evapotranspiration, ET; discharge, Q; and soil water storage, Delta S) over five years (2001-2005) in a boreal oligotrophic fen in northern Sweden based on continuous eddy covariance, water table level (WTL), and weir measurements. For the growing season (May 1 to September 31), the 5 year averages (+/- standard deviation) of the midday (10:00 to 14:00 h) Bowen ratio (beta, i.e., H/lambda E) was 0.86 +/- 0.08. Seasonal and inter-annual variability of beta was mainly driven by lambda E which itself was strongly controlled by both weather (i.e., vapor pressure deficit, D, and net radiation, R-n) and physiological parameters (i.e., surface resistance). During the growing season, surface resistance largely exceeded aerodynamic resistance, which together with low mean values of the actual ET to potential ET ratio (0.55 +/- 0.05) and Priestley-Taylor alpha (0.89) suggests significant physiological constrains on ET in this well-watered fen. Among the water budget components, the inter-annual variability of ET was lower (199 to 298 mm) compared to Q (225 to 752 mm), with each accounting on average for 34 and 65% of the ecosystem water loss, respectively. The fraction of P expended into ET was negatively correlated to P and positively to R-n. Although a decrease in WTL caused a reduction of the surface conductance, the overall effect of WTL on ET was limited. Non-growing season (October 1 to April 30) fluxes of H, lambda E, and Q were significant representing on average -67%, 13%, and 61%, respectively, of their growing season sums (negative sign indicates opposite flux direction between the two seasons). Overall, our findings suggest that plant functional type composition, P and R-n dynamics (i.e., amount and timing) were the major controls on the partitioning of the mire energy and water budgets. This has important implications for the regional climate as well as for ecosystem development, nutrient, and carbon dynamics. Citation: Peichl, M., J. Sagerfors, A. Lindroth, I. Buffam, A. Grelle, L. Klemedtsson, H. Laudon, and M. B. Nilsson (2013), Energy exchange and water budget partitioning in a boreal minerogenic mire, J. Geophys. Res. Biogeosci., 118, 1-13, doi:10.1029/2012JG002073

    A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen

    No full text
    This study uses a 12-year time series (2001-2012) of eddy covariance measurements to investigate the long-term net ecosystem exchange (NEE) of carbon dioxide (CO2) and inter-annual variations in relation to abiotic drivers in a boreal fen in northern Sweden. The peatland was a sink for atmospheric CO2 in each of the twelve study years with a 12-year average (+/- standard deviation) NEE of -58 +/- 21 g C m(-2) yr(-1). For ten out of twelve years, the cumulative annual NEE was within a range of -42 to -79 g C m(-2) yr(-1) suggesting a general state of resilience of NEE to moderate inter-annual climate variations. However, the annual NEE of -18 and -106 g C m(-2) yr(-1) in 2006 and 2008, respectively, diverged considerably from this common range. The lower annual CO2 uptake in 2006 was mainly due to late summer emissions related to an exceptional drop in water table level (WTL). A positive relationship (R-2 = 0.65) between pre-growing season (January to April) air temperature (Ta) and summer (June to July) gross ecosystem production (GEP) was observed. We suggest that enhanced GEP due to mild pre-growing season air temperature in combination with air temperature constraints on ecosystem respiration (ER) during the following cooler summer explained most of the greater net CO2 uptake in 2008. Differences in the annual and growing season means of other abiotic variables (e.g. radiation, vapor pressure deficit, precipitation) and growing season properties (i.e. start date, end date, length) were unable to explain the inter-annual variations of NEE. Overall, our findings suggest that this boreal fen acts as a persistent contemporary sink for atmospheric CO2 that is, however, susceptible to severe anomalies in WTL and pre-growing season air temperature associated with predicted changes in climate patterns for the boreal region

    Climate Control of Terrestrial Carbon Exchange across Biomes and Continents

    No full text
    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predicate future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks1, 2. However, knowledge of even the broad relationships between climate and terrestrial CO2 exchange with the atmosphere on yearly to decadal scales remains highly uncertain. Here we present data describing net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 132 unique sites including various ecosystems over 6 continents with a total of 583 site-years. With respect to controlling factors we find two distinct groupings of sites: (1) a temperature-limited group where NEE has an exponential relationship with mean annual temperature; and (2) a dryness-limited group where NEE has an inverse exponential relationship with the dryness index7. A strong latitudinal dependence emerges, with 92% of the temperature-limited sites located above 42oN, and 77% of the dryness-limited sites located below 42oN. The sensitivity of NEE to mean annual temperature breaks down at a threshold value of ~16oC, above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence. Our findings suggest that (1) net ecosystem carbon exchange is highly limited by mean annual temperature at mid- and high-latitudes, and (2) net ecosystem carbon exchange is highly limited by dryness at low latitudes.JRC.H.2-Air and Climat
    corecore