358 research outputs found

    Differential expression of basement membrane collagen-IV alpha l to alpha 6 chains during oral carcinogenes

    Get PDF
    This study aimed to resolve if basement membrane (BM) collagen alpha chains undergo remodeling during oral. carcinogenesis. Using immunohistochemistry and transmission electron microscopy, we found that BMs in oral epithelial dysplasias (OED: mild, n=10; moderate, n=10; severe, n=10) and carcinoma in situ (CIS) (n=10) differed from normal mucosa (n=6) and oral epithelial hyperplasia (n=5) in showing: (1) excessive lamina densa-like material ultrastructurally, and (2) stronger immunoexpression for alpha 5(IV) than for alpha 1(IV), alpha 2(IV), and alpha 6(IV) chains-findings that implicate these molecules' role as an adhesive template for the attachment and persistence of basal dysplastic cells. Incipient loss of BM integrity in CIS, where alpha 5(IV)/alpha 6(IV) chains were more frequently absent than alpha 1(IV)/alpha 2(IV) chains, suggests that alpha(IV) network disruption is crucial for progression of dysplastic cells into the extracellular compartment, marking transition into the invasive phase. In carcinomatous BM, the disappearance of alpha(IV) chains was more severe in poorly differentiated oral squamous cell carcinoma (OSCC) (n=10) than in well-differentiated OSCC (n=10). In all samples examined, alpha 3(IV) and alpha 4(IV) chains were absent. These findings taken together suggest that BM collagen-IV alpha chains undergo remodeling where selective increase and loss of these molecules are probably early and late events, respectively, during progression of oral dysplasia to cancer. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis

    Get PDF
    Aims/hypothesisThis study examined whether the capsule which encases islets of Langerhans in the NOD mouse pancreas represents a specialised extracellular matrix (ECM) or basement membrane that protects islets from autoimmune attack.MethodsImmunofluorescence microscopy using a panel of antibodies to collagens type IV, laminins, nidogens and perlecan was performed to localise matrix components in NOD mouse pancreas before diabetes onset, at onset of diabetes and after clinical diabetes was established (2-8.5 weeks post-onset).ResultsPerlecan, a heparan sulphate proteoglycan that is characteristic of basement membranes and has not previously been investigated in islets, was localised in the peri-islet capsule and surrounding intra-islet capillaries. Other components present in the peri-islet capsule included laminin chains alpha2, beta1 and gamma1, collagen type IV alpha1 and alpha2, and nidogen 1 and 2. Collagen type IV alpha3-alpha6 were not detected. These findings confirm that the peri-islet capsule represents a specialised ECM or conventional basement membrane. The islet basement membrane was destroyed in islets where intra-islet infiltration of leucocytes marked the progression from non-destructive to destructive insulitis. No changes in basement membrane composition were observed before leucocyte infiltration.Conclusions/interpretationThese findings suggest that the islet basement membrane functions as a physical barrier to leucocyte migration into islets and that degradation of the islet basement membrane marks the onset of destructive autoimmune insulitis and diabetes development in NOD mice. The components of the islet basement membrane that we identified predict that specialised degradative enzymes are likely to function in autoimmune islet damage.H. F. Irving-Rodgers, A. F. Ziolkowski, C. R. Parish, Y. Sado, Y. Ninomiya, C. J. Simeonovic, R. J. Rodger

    X Chromosomes Alternate between Two States prior to Random X-Inactivation

    Get PDF
    Early in the development of female mammals, one of the two X chromosomes is silenced in half of cells and the other X chromosome is silenced in the remaining half. The basis of this apparent randomness is not understood. We show that before X-inactivation, the two X chromosomes appear to exist in distinct states that correspond to their fates as the active and inactive X chromosomes. Xist and Tsix, noncoding RNAs that control X chromosome fates upon X-inactivation, also determine the states of the X chromosomes prior to X-inactivation. In wild-type ES cells, X chromosomes switch between states; among the progeny of a single cell, a given X chromosome exhibits each state with equal frequency. We propose a model in which the concerted switching of homologous X chromosomes between mutually exclusive future active and future inactive states provides the basis for the apparently random silencing of one X chromosome in female cells

    Dynamics of extracellular matrix in ovarian follicles and corpora lutea of mice

    Get PDF
    Despite the mouse being an important laboratory species, little is known about changes in its extracellular matrix (ECM) during follicle and corpora lutea formation and regression. Follicle development was induced in mice (29 days of age/experimental day 0) by injections of pregnant mare’s serum gonadotrophin on days 0 and 1 and ovulation was induced by injection of human chorionic gonadotrophin on day 2. Ovaries were collected for immunohistochemistry (n=10 per group) on days 0, 2 and 5. Another group was mated and ovaries were examined on day 11 (n=7). Collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2 and perlecan were present in the follicular basal lamina of all developmental stages. Collagen type XVIII was only found in basal lamina of primordial, primary and some preantral follicles, whereas laminin α2 was only detected in some preantral and antral follicles. The focimatrix, a specialised matrix of the membrana granulosa, contained collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. In the corpora lutea, staining was restricted to capillary sub-endothelial basal laminas containing collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. Laminins α4 and α5 were not immunolocalised to any structure in the mouse ovary. The ECM composition of the mouse ovary has similarities to, but also major differences from, other species with respect to nidogens 1 and 2 and perlecan

    Extracellular volume quantification in isolated hypertension - changes at the detectable limits?

    Get PDF
    The funding source (British Heart Foundation and UK National Institute for Health Research) provided salaries for research training (FZ, TT, DS, SW), but had no role in study design, collection, analysis, interpretation, writing, or decisions with regard to publication. This work was undertaken at University College London Hospital, which received a proportion of funding from the UK Department of Health National Institute for Health Research Biomedical Research Centres funding scheme. We are grateful to King’s College London Laboratories for processing the collagen biomarker panel

    Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review.

    Get PDF
    Cardiovascular Magnetic Resonance is increasingly used to differentiate the aetiology of cardiomyopathies. Late Gadolinium Enhancement (LGE) is the reference standard for non-invasive imaging of myocardial scar and focal fibrosis and is valuable in the differential diagnosis of ischaemic versus non-ischaemic cardiomyopathy. Diffuse fibrosis may go undetected on LGE imaging. Tissue characterisation with parametric mapping methods has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by LGE. Native and post-contrast T1 mapping in particular has shown promise as a novel biomarker to support diagnostic, therapeutic and prognostic decision making in ischaemic and non-ischaemic cardiomyopathies as well as in patients with acute chest pain syndromes. Furthermore, changes in the myocardium over time may be assessed longitudinally with this non-invasive tissue characterisation method

    T1 mapping in cardiac MRI

    Get PDF
    Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice

    Collagen mRNA levels changes during colorectal cancer carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different α(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of <it>type IV collagen (α1/α4/α6) </it>and <it>type VII collagen (α1) </it>during colorectal cancer carcinogenesis.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>α1(IV), α4(IV), α6(IV), and α1(VII) </it>in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 20). mRNA levels were normalized to <it>β-actin</it>. Immunohistochemical analysis of the distributions of type IV and type VII collagens were performed on normal and affected tissues from colorectal cancer patients.</p> <p>Results</p> <p>The <it>α1(IV) </it>and <it>α1(VII) </it>mRNA levels were statistically significantly higher in colorectal cancer tissue (p < 0.001) as compared to corresponding tissue from healthy controls. This is an early event as tissue from adenomas also displayed a higher level. There were small changes in the levels of <it>α4(IV)</it>. The level of <it>α6(IV) </it>was 5-fold lower in colorectal cancer tissue as compared to healthy individuals (p < 0.01). The localisation of type IV and type VII collagen was visualized by immunohistochemical staining.</p> <p>Conclusion</p> <p>Our results suggest that the down-regulation of <it>α6(IV</it>) mRNA coincides with the acquisition of invasive growth properties, whereas <it>α1(IV) </it>and <it>α1(VII) </it>mRNAs were up-regulated already in dysplastic tissue. There are no differences in collagen expression between tissues from healthy individuals and normal tissues from affected individuals.</p

    Protein Localization with Flexible DNA or RNA

    Get PDF
    Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers
    corecore