13 research outputs found

    AaABF3, an Abscisic Acid–Responsive Transcription Factor, Positively Regulates Artemisinin Biosynthesis in Artemisia annua

    Get PDF
    Artemisinin is well known for its irreplaceable curative effect on the devastating parasitic disease, Malaria. This sesquiterpenoid is specifically produced in Chinese traditional herbal plant Artemisia annua. Earlier studies have shown that phytohormone abscisic acid (ABA) plays an important role in increasing the artemisinin content, but how ABA regulates artemisinin biosynthesis is still poorly understood. In this study, we identified that AaABF3 encoded an ABRE (ABA-responsive elements) binding factor. qRT-PCR analysis showed that AaABF3 was induced by ABA and expressed much higher in trichomes where artemisinin is synthesized and accumulated. To further investigate the mechanism of AaABF3 regulating the artemisinin biosynthesis, we carried out dual-luciferase analysis, yeast one-hybrid assay and electrophoretic mobility shift assay. The results revealed that AaABF3 could directly bind to the promoter of ALDH1 gene, which is a key gene in artemisinin biosynthesis, and activate the expression of ALDH1. Functional analysis revealed that overexpression of AaABF3 in A. annua enhanced the production of artemisinin, while RNA interference of AaABF3 resulted in decreased artemisinin content. Taken together, our results demonstrated that AaABF3 played an important role in ABA-regulated artemisinin biosynthesis through direct regulation of artemisinin biosynthesis gene, ALDH1

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Post-partum haemorrhage is the leading cause of maternal death worldwide. Early administration of tranexamic acid reduces deaths due to bleeding in trauma patients. We aimed to assess the effects of early administration of tranexamic acid on death, hysterectomy, and other relevant outcomes in women with post-partum haemorrhage. Methods In this randomised, double-blind, placebo-controlled trial, we recruited women aged 16 years and older with a clinical diagnosis of post-partum haemorrhage after a vaginal birth or caesarean section from 193 hospitals in 21 countries. We randomly assigned women to receive either 1 g intravenous tranexamic acid or matching placebo in addition to usual care. If bleeding continued after 30 min, or stopped and restarted within 24 h of the first dose, a second dose of 1 g of tranexamic acid or placebo could be given. Patients were assigned by selection of a numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. Participants, care givers, and those assessing outcomes were masked to allocation. We originally planned to enrol 15 000 women with a composite primary endpoint of death from all-causes or hysterectomy within 42 days of giving birth. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as randomisation. Although tranexamic acid could influence the risk of death in these cases, it could not affect the risk of hysterectomy. We therefore increased the sample size from 15 000 to 20 000 women in order to estimate the effect of tranexamic acid on the risk of death from post-partum haemorrhage. All analyses were done on an intention-to-treat basis. This trial is registered with ISRCTN76912190 (Dec 8, 2008); ClinicalTrials.gov, number NCT00872469; and PACTR201007000192283. Findings Between March, 2010, and April, 2016, 20 060 women were enrolled and randomly assigned to receive tranexamic acid (n=10 051) or placebo (n=10 009), of whom 10 036 and 9985, respectively, were included in the analysis. Death due to bleeding was significantly reduced in women given tranexamic acid (155 [1·5%] of 10 036 patients vs 191 [1·9%] of 9985 in the placebo group, risk ratio [RR] 0·81, 95% CI 0·65–1·00; p=0·045), especially in women given treatment within 3 h of giving birth (89 [1·2%] in the tranexamic acid group vs 127 [1·7%] in the placebo group, RR 0·69, 95% CI 0·52–0·91; p=0·008). All other causes of death did not differ significantly by group. Hysterectomy was not reduced with tranexamic acid (358 [3·6%] patients in the tranexamic acid group vs 351 [3·5%] in the placebo group, RR 1·02, 95% CI 0·88–1·07; p=0·84). The composite primary endpoint of death from all causes or hysterectomy was not reduced with tranexamic acid (534 [5·3%] deaths or hysterectomies in the tranexamic acid group vs 546 [5·5%] in the placebo group, RR 0·97, 95% CI 0·87-1·09; p=0·65). Adverse events (including thromboembolic events) did not differ significantly in the tranexamic acid versus placebo group. Interpretation Tranexamic acid reduces death due to bleeding in women with post-partum haemorrhage with no adverse effects. When used as a treatment for postpartum haemorrhage, tranexamic acid should be given as soon as possible after bleeding onset. Funding London School of Hygiene & Tropical Medicine, Pfizer, UK Department of Health, Wellcome Trust, and Bill & Melinda Gates Foundation

    Investigation of Antioxidant Potential in Ocimum basilicum Flower

    No full text
    Aims: The present work is particularly focused on antioxidant properties of flower of Ocimum basilicum plant. Study Design: Study is basically designed on Column chromatography of extracts. Place and Duration of Study: Sample collection and all experimental work was done in Chemistry Department Government College University, Lahore. The study comprises duration of 6 months. Methodology: The flower of Ocimum basilicum were collected, dried and grinded. It was soaked in methanol-water (70:30) in dark bottle for a week. Followed by a scheme (column chromatography). After TLC of extracts, three activities were done. Phosphomolybdate, Ferric thiocyanate (FTC), and Folin-Ciocalteu (FC reagent) for determination of antioxidant capacity, peroxidation, determination of total phenols respectively. Results: The sample OC2 and crude have maximum absorbance at the concentration of 100µl, 200µl and 300µl. The results show that crude has maximum antioxidant capacity. The phenolic contents are in the increasing order of fraction OC2, OC5, and crude. The maximum phenolic contents are present in crude. Reference has the maximum ability for peroxidation for ferric thiocyanate complex by giving red colour. Conclusion: Overall it is concluded that Ocimum basilicum flower has antioxidant capacity as good as a standard antioxidant. It is recommended in food/medicine as natural herbal product

    Combined effect of endophytic Bacillus mycoides and rock phosphate on the amelioration of heavy metal stress in wheat plants

    No full text
    Abstract Background Zinc (Zn) and nickel (Ni) are nutrients that are crucial for plant growth; however, when they are present at higher concentrations, they can cause toxicity in plants. The present study aimed to isolate plant growth promoting endophytic bacteria from Viburnum grandiflorum and assess its plant and defense promoting potential alone and in combination with RP in zinc (Zn) and nickel (Ni) toxic soil. The isolated endophytic bacteria were identified using 16s rRNA gene sequencing. For the experiment, twelve different treatments were applied using Zn, Ni, isolated endophytic Bacillus mycoides (Accession # MW979613), and rock phosphate (RP). The Ni, Zn and RP were used at the rate of (100 mg/kg) and (0.2 g/kg) respectively. A pot experiment with three replicates of each treatment was conducted using a complete randomized design (CRD). Results The results indicated that Ni (T5 = seed + 100 mg/kg Ni and T9 = seed + 100 mg/kg Zn) and Zn concentrations inhibited plant growth, but the intensity of growth inhibition was higher in Ni-contaminated soil. Bacillus mycoides and RP at 100 mg/Kg Zn (T12 = inoculated seed + 100 mg/kg Zn + RP0.2 g/kg.) increased the shoot length, leaf width, protein and sugar content by 57%, 13%, 20% and 34%, respectively, compared to the control. The antioxidant enzymes superoxide dismutases (SOD), peroxidase (POD) were decreased in contaminated soil. Furthermore, Ni and Zn accumulation was inhibited in T11 (seed + 100 mg/kg Zn + RP0.2 g/Kg) and T12 (inoculated seed + 100 mg/kg Zn + RP0.2 g/Kg) by 62 and 63% respectively. The Cu, Ca, and K, contents increased by 128, 219 and 85, Mn, Na, and K by 326, 449, and 84% in (T3 = inoculated seed) and (T4 = inoculated seed + RP 0.2 g/Kg) respectively. Conclusions Ni was more toxic to plants than Zn, but endophytic bacteria isolated from Viburnum grandiflorum, helped wheat (Triticum aestivum) plants and reduced the toxic effects of Ni and Zn. The effect of Bacillus mycoides was more prominent in combination with RP which promoted and suppressed heavy-metal toxicity. The reported combination of Bacillus mycoides and RP may be useful for improving plant growth and overcoming metal stress

    Piriformospora indica alter root-associated microbiome structure to enhance Artemisia annua L. tolerance to arsenic

    No full text
    Microorganisms in the rhizosphere are crucial allies for plant stress tolerance. Recent research suggests that by interacting with the rhizosphere microbiome, microorganisms can aid in the revegetation of soils contaminated with heavy metal(loid)s (HMs). However, it is unknown that how Piriformospora indica influences the rhizosphere microbiome to mitigate arsenic-toxicity in arsenic-enriched environments. Artemisia annua plants were grown in the presence or absence of P. indica and spiked with low (50) and high (150 µmol/L) concentrations of arsenic (As). After inoculation with P. indica, fresh weight increased by 37.7% and 10% in control and high concentration treated plants, respectively. Transmission electron microscopy showed that cellular organelles were severely damaged by As and even disappeared under high concentration. Furthermore, As was mostly accumulated by 5.9 and 18.1 mg/kg dry weight in the roots of inoculated plants treated with low and high concentrations of As, respectively. Additionally, 16 S and ITS rRNA gene sequencing were applied to analyze the rhizosphere microbial community structure of A. annua under different treatments. A significant difference was observed in microbial community structure under different treatments as revealed by non-metric multidimensional scaling ordination. The bacterial and fungal richness and diversity in the rhizosphere of inoculated plants were actively balanced and regulated by P. indica co-cultivation. Lysobacter and Steroidobacter were found to be the As-resistant bacterial genera. We conclude that P. indica inoculation could alter rhizosphere microecology, thereby mitigating As-toxicity without harming the environment
    corecore