2,787 research outputs found

    Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes

    Get PDF
    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought

    Preparation and Comparison of Reduced Graphene Oxide and Carbon Nanotubes as Fillers in Conductive Natural Rubber for Flexible Electronics

    Get PDF
    Conductive natural rubber (NR) nanocomposites were prepared by solvent-casting suspensions of reduced graphene oxide (rGO) or carbon nanotubes (CNTs), followed by vulcanization of the rubber composites. Both rGO and CNT were compatible as fillers in the NR as well as having sufficient intrinsic electrical conductivity for functional applications. Physical (thermal) and chemical reduction of GO were investigated, and the results of the reductions were monitored by X-ray photoelectron spectroscopy for establishing a reduction protocol that was useful for the rGO nanocomposite preparation. Field-emission scanning electron microscopy showed that both nanofillers were adequately dispersed in the main NR phase. The CNT composite displays a marked mechanical hysteresis and higher elongation at break, in comparison to the rGO composites for an equal fraction of the carbon phase. Moreover, the composite conductivity was always ca. 3-4 orders of magnitude higher for the CNT composite than for the rGO composites, the former reaching a maximum conductivity of ca. 10.5 S/m, which was explained by the more favorable geometry of the CNT versus the rGO sheets. For low current density applications though, both composites achieved the necessary percolation and showed the electrical conductivity needed for being applied as flexible conductors for a light-emitting diode

    The sponge effect and carbon emission mitigation potentials of the global cement cycle

    Get PDF
    Funder: Det Frie Forskningsråd (Danish Council for Independent Research); doi: https://doi.org/10.13039/501100004836Funder: Syddansk Universitet (University of Southern Denmark); doi: https://doi.org/10.13039/501100006356Funder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); doi: https://doi.org/10.13039/501100000266Abstract: Cement plays a dual role in the global carbon cycle like a sponge: its massive production contributes significantly to present-day global anthropogenic CO2 emissions, yet its hydrated products gradually reabsorb substantial amounts of atmospheric CO2 (carbonation) in the future. The role of this sponge effect along the cement cycle (including production, use, and demolition) in carbon emissions mitigation, however, remains hitherto unexplored. Here, we quantify the effects of demand- and supply-side mitigation measures considering this material-energy-emissions-uptake nexus, finding that climate goals would be imperiled if the growth of cement stocks continues. Future reabsorption of CO2 will be significant (~30% of cumulative CO2 emissions from 2015 to 2100), but climate goal compliant net CO2 emissions reduction along the global cement cycle will require both radical technology advancements (e.g., carbon capture and storage) and widespread deployment of material efficiency measures, which go beyond those envisaged in current technology roadmaps

    QTL detection for milk production traits in goats using a longitudinal model

    Get PDF
    Summary Eight paternal half-sib families were used to identify chromosomal regions associated with variation in the lactation curves of dairy goats. DNA samples from 162 animals were amplified by PCR for 37 microsatellite markers, from Capra hircus autosomes CHI3, CHI6, CHI14 and CHI20. Milk samples were collected during 6 years, and there were 897 records for milk yield (MY) and 814 for fat (FP) and protein percentage (PP). The analysis was conducted in two stages. First, a random regression model with several fixed effects was fitted to describe the lactation function, using a scale (α) plus four shape parameters: β and γ, both associated with a decrease in the slope of the curve, and δ and φ that are related to the increase in slope. Predictions of α, β, γ, δ and φ were regressed using an interval mapping model, and F-tests were used to test for quantitative trait loci (QTL) effects. Significant (p < 0.05) QTLs were found for: (i) MY: CHI6 at 70-80 cM for all parameters; CHI14 at 14 cM for δ and φ; (ii) FP: CHI14, at 63 cM was associated with β; CHI20, at 72 cM, showed association with α; (iii) PP: chromosomal regions associated with β were found at 59 cM in CHI3 and at 55 cM in CHI20 with α and γ. Analyses using more families and more animals will be useful to confirm or to reject these findings. © 2008 Blackwell Verlag, Berlin.Fil: Roldán, D.L.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Rabasa, Alicia Elvira. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Saldaño, S.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Holgado, F.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Tucuman-santiago del Estero. Campo Experimental Regional Leales; ArgentinaFil: Poli, M. A.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentin

    Non-Water-Suppressed 1H MR Spectroscopy with Orientational Prior Knowledge Shows Potential for Separating Intra- and Extramyocellular Lipid Signals in Human Myocardium

    Get PDF
    Conditions such as type II diabetes are linked with elevated lipid levels in the heart, and significantly increased risk of heart failure; however, metabolic processes underlying the development of cardiac disease in type II diabetes are not fully understood. Here we present a non-invasive method for in vivo investigation of cardiac lipid metabolism: namely, IVS-McPRESS. This technique uses metabolite-cycled, non-water suppressed 1H cardiac magnetic resonance spectroscopy with prospective and retrospective motion correction. High-quality IVS-McPRESS data acquired from healthy volunteers allowed us to investigate the frequency shift of extramyocellular lipid signals, which depends on the myocardial fibre orientation. Assuming consistent voxel positioning relative to myofibres, the myofibre angle with the magnetic field was derived from the voxel orientation. For separation and individual analysis of intra- and extramyocellular lipid signals, the angle myocardial fibres in the spectroscopy voxel take with the magnetic field should be within ±24.5°. Metabolite and lipid concentrations were analysed with respect to BMI. Significant correlations between BMI and unsaturated fatty acids in intramyocellular lipids, and methylene groups in extramyocellular lipids were found. The proposed IVS-McPRESS technique enables non-invasive investigation of cardiac lipid metabolism and may thus be a useful tool to study healthy and pathological conditions

    Entanglement-enhanced testing of multiple quantum hypotheses

    Get PDF
    Quantum hypothesis testing has been greatly advanced for the binary discrimination of two states, or two channels. In this setting, we already know that quantum entanglement can be used to enhance the discrimination of two bosonic channels. Here, we remove the restriction of binary hypotheses and show that entangled photons can remarkably boost the discrimination of multiple bosonic channels. More precisely, we formulate a general problem of channel-position finding where the goal is to determine the position of a target channel among many background channels. We prove that, using entangled photons at the input and a generalized form of conditional nulling receiver at the output, we may outperform any classical strategy. Our results can be applied to enhance a range of technological tasks, including the optical readout of sparse classical data, the spectroscopic analysis of a frequency spectrum, and the determination of the direction of a target at fixed range

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
    corecore